

CPX – Operationalizing CPO for AI Clusters

Hot Interconnects, August 2025

AI Engines Need Very High I/O Bandwidths

→ Not so hungry Complex calculations

Sources

- [1] S. Williams, A. Waterman, and D. Patterson "Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures," Communications of the ACM, 52(4), 65-76 (2009).
- [2] N. P. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit TM," *Proc. 44th annual int. symp. on computer architecture*, 1-12 (2017).
- [3] H. Ltaief et al., "Scaling the "Memory Wall" for Multi-Dimensional Seismic Processing with Algebraic Compression on Cerebras CS-2 Systems," ACM/IEEE Int. Conf. High Performance Computing, Networking, Storage, and Analysis (SC'23) (2023).
- [4] Nvidia NVL72; online: https://www.nvidia.com/en-us/data-center/gb200-nvl72/

xPUs could use orders of magnitude more I/O BW

Mixed-media is core requirement "Copper when you can, optics when you must"

Requires high-speed SerDes I/O

Paradigm extends to 400G

→ Low power, high density optics must interface with high speed SerDes I/O

Copper when you can, optics when you must

Mixed Media Support Saves Power in AI Clusters

Copper when you can, optics when you must

Avoid retimer DSPs at all costs

Example Mixed-Media AI Clusters

	Passive Copper & Retimed Optics	Passive Copper & Linear Optics
# xPUs	150k	150k
BW per GPU (any-to-any connectivity)	25.6 Tbps	25.6 Tbps
Switches & Links (as % of cluster power)	240 MW 48%	150MW 37%

Passive Copper & Retimed Optics	Active Copper & Linear Optics
600k	600k
25.6 Tbps	25.6 Tbps
1.7 GW 61%	600MW 37%

~ \$320M savings over 5 years

~ \$3.8B savings over 5 years

Active linear copper enables larger clusters without % power impact

Densification Needed to Avoid Retimer DSPs

	I/O density (TX+RX) [Tbps/mm]
OSFP 1.6T	0.14
200G SerDes	1.5

→ Shorter on-board traces

→ Denser systems, shorter cables

→ No retimer DSPs needed

Power efficient I/O for AI needs to approach SerDes densities

AI Cluster Scaling Needs Full Fan-Out Networking

- Clustered Arch → Mixed media I/O
- Large # of xPUs → Large switch radix
- High xPU I/O BW → Large # of switches

Full fan-out at SerDes rates

No big fat point-to-point pipes

Single-Wavelength Optical I/O Beats WDM

Single-wavelength fiber shuffle

→ Simple, low-loss

Multi-wavelength (WDM) fiber shuffle

→ Complex, lossy, expensive

2D Arrays Enable Scalable High-Density I/O

A 2D Optical Engine – Details

Driver & Trans-Impedance Amplifier

224G per lane using SiGe technology Advanced equalization

Photonic IC (Silicon Photonics)

Polarization insensitive surface couplers High-speed modulators (> 50 GHz) High-speed detectors (> 50 GHz)

Advanced Packaging

3D stacked electronics and photonics ICs 2D Fiber coupling with backside mirror

It Is Clear What AI Wants From Optics

Low power – Support for retimer-free linear optics

High density – Matched to SerDes I/O

Full fan-out – Single wavelength per fiber (DR optics)

Operations - Serviceability and multi-vendor ecosystem

Common Connector for Co-Packed Copper & Optics

- 6.4T removable connector
- Compatible with copper
- Retimer-free linear interface
- 5 Watts per Tbps (5 pJ/b)
- Matched to SerDes I/O
- Multi-vendor

High-density low-power (retimer-free) systems need optics in CPC sockets

Key Takeaways

Mixed-Media support

→ Optics must support high speed SerDes for next 5-10 years

Full fan-out for scale-up/scale-out

→ Scale-up & scale-out converging on DR optics

Linear Optics paradigm for low-power I/O

→ Co-packaged I/O eliminates retimer DSPs

Multi-vendor ecosystem

→ CPX paradigm replicates front-panel pluggable paradigm

