Deadlock-free routing for Full-mesh networks without using virtual channels

A. Cano, C. Camarero, C. Martínez, R. Beivide Computer Architecture Research Group

August 20, 2025

University of Cantabria (Spain)

Outline

- 1 Introduction
- 2 TERA: Topology Embedded Routing Algorithm
- 3 Methodology and Results
- 4 Conclusions

Introduction

Virtual Channels in Switches

Uses of Virtual Channels

- Head-of-Line Blocking
- QoS support
- Routing deadlock

Cost of Virtual Channels

- Area
- Power
- Extra logic

Virtual Channels in Switches

Uses of Virtual Channels

- Head-of-Line Blocking
- QoS support
- Routing deadlock

Cost of Virtual Channels

- Area
- Power
- Extra logic

Key Achievements

No VC

Deadlock-free routing in Full-Mesh networks without Virtual Channels.

100%

Throughput gain over the previous state-of-the-art routing algorithm.

Successfully adapted to a 2D HyperX network.

 $8\ of\ the\ top\ 10$ supercomputers on the TOP500 list use network topologies based on Full-Mesh.

source

8 of the top 10 supercomputers on the TOP500 list use network topologies based on Full-Mesh.

UC

8 of the top 10 supercomputers on the TOP500 list use network topologies based on Full-Mesh.

sources

8 of the top 10 supercomputers on the TOP500 list use network topologies based on Full-Mesh.

Non-Minimal Routing: Improving performance with 2-hop paths.

sources

Non-Minimal Routing: Improving performance with 2-hop paths.

UC

sources

Non-Minimal Routing: Improving performance with 2-hop paths.

UC

sources

Non-Minimal Routing: Improving performance with 2-hop paths.

UC

Problem: routing-deadlock.

Routing-deadlock representation

Ordering virtual channels

Ordering links

Deadlock Avoidance: Pros and Cons

Ordering Virtual Channels

- + Does not limit path diversity
- Requires extra buffers and arbitration logic
- Higher cost, area, and power consumption

Ordering Links

- + No need for additional virtual channels.
- + Simpler and cheaper to implement.
- Limits path diversity ⇒
 lower performance

Deadlock Avoidance: Pros and Cons

Ordering Virtual Channels

- + Does not limit path diversity
- Requires extra buffers and arbitration logic
- Higher cost, area, and power consumption

Ordering Links

- No need for additional virtual channels.
- + Simpler and cheaper to implement.
- Limits path diversity ⇒
 lower performance

Focus on improving path diversity in link ordering.

Limitations of Link Ordering

Key Limitations

■ Maximum availability: $\frac{2}{3}$ of all 2-hop paths. ¹

¹Kwauk et al., "BoomGate: Deadlock Avoidance in Non-Minimal Routing for **UC** High Radix Networks". HPCA'21. doi:10.1109/HPCA51647.2021.00064.

Limitations of Link Ordering

Key Limitations

- Maximum availability: $\frac{2}{3}$ of all 2-hop paths. ¹
- With uniform link utilization only $\frac{1}{2}$ of the total.

Cano et al. ______Routing in Full-Mesh 11 / 25

Limitations of Link Ordering

Key Limitations

- Maximum availability: $\frac{2}{3}$ of all 2-hop paths. ¹
- With uniform link utilization only $\frac{1}{2}$ of the total.
- Half the paths \approx Half the throughput.

Implication

Link ordering has reached its limit. A new approach is needed.

¹Kwauk et al., "BoomGate: Deadlock Avoidance in Non-Minimal Routing for **UC** High Radix Networks". HPCA'21. doi:10.1109/HPCA51647.2021.00064.

TERA: Topology Embedded

Routing Algorithm

Physical partitioning of the Full-mesh:

- Service network: an embedded network.
- Main network: the complement of the service network.

Physical partitioning of the Full-mesh:

- Service network: an embedded network.
- Main network: the complement of the service network.

Physical partitioning of the Full-mesh:

- Service network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Physical partitioning of the Full-mesh:

- Service network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Physical partitioning of the Full-mesh:

- **Service** network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Physical partitioning of the Full-mesh:

- Service network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Physical partitioning of the Full-mesh:

- **Service** network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Cano et al. Routing in Full-Mesh 14 / 25

Physical partitioning of the Full-mesh:

- Service network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Cano et al. Routing in Full-Mesh 14 / 25

Physical partitioning of the Full-mesh:

- Service network: a deadlock-free set of paths.
- Main network: no restriction in the use.

Cano et al. Routing in Full-Mesh 14 / 25

At Injection Port

- MIN hop
- Main hop
- Service hop

At In-transit Port

- MIN hop
- Service hop

Choose port with $\min w(p)$

$$w(p) = \mathsf{occupancy}[p] + \begin{cases} 0, & \text{if minimal} \\ C, & \text{if non-minimal} \end{cases}$$

Cano et al. Routing in Full-Mesh 15 / 25

The choice of the **service network** directly controls two critical network properties:

- The total number of available non-minimal paths.
- The maximum number of hops a packet can take.

Cano et al. Routing in Full-Mesh 16 / 25

Topology	Diameter	#Links
Full-Mesh	1	$O(n^2)$
Mesh	O(n)	O(n)
Tree	$O(\log n)$	O(n)
Hypercube	$O(\log n)$	$O(n \log n)$
3D-HyperX	3	$O(n^{1.33})$
2D-HyperX	2	$O(n^{1.50})$

Properties in terms of the number of switches n.

Cano et al. Routing in Full-Mesh 17 / 25

Topology	Diameter	#Links
Full-Mesh	1	$O(n^2)$
Mesh	O(n)	O(n)
Tree	$O(\log n)$	O(n)
Hypercube	$O(\log n)$	$O(n \log n)$
3D-HyperX	3	$O(n^{1.33})$
2D-HyperX	2	$O(n^{1.50})$

Properties in terms of the number of switches n.

Cano et al. Routing in Full-Mesh 17 / 25

Topology	Diameter	#Links
Full-Mesh	1	$O(n^2)$
Mesh	O(n)	O(n)
Tree	$O(\log n)$	O(n)
Hypercube	$O(\log n)$	$O(n \log n)$
3D-HyperX	3	$O(n^{1.33})$
2D-HyperX	2	$O(n^{1.50})$

Properties in terms of the number of switches n.

Cano et al. Routing in Full-Mesh 17 / 25

Cano et al. Routing in Full-Mesh 18 / 25

Estimated performance of TERA under adverse traffic

Cano et al. Routing in Full-Mesh 19 / 25

Estimated performance of TERA under adverse traffic

Cano et al. Routing in Full-Mesh 19 / 25

Methodology and Results

Methodology

Evaluated Routing Schemes in CAMINOS simulator

- Omni-WAR: Baseline for Full-Mesh (2 VCs). 2
- sRINR: Link ordering SOTA (1VC).
- T-Hx2D: TERA with a service HyperX 2D (1 VC).
- T-Hx3D: TERA with a service HyperX 3D (1 VC).

Code for reproducibility:

https://github.com/alexcano98/

TERA-routing-HOTI-2025-reproducibility

²McDonald et al., "Practical and efficient incremental adaptive routing for HyperX networks," in Proc. SC '19. doi:10.1145/3295500.3356151.

UC

Traffic with Bernoulli generation at a different offered load in a Full-Mesh of 64 switches with 4096 total servers.

Cano et al. Routing in Full-Mesh 21 / 25

Traffic with Bernoulli generation at a different offered load in a Full-Mesh of 64 switches with 4096 total servers. TERA runs without VCs!

Cano et al. Routing in Full-Mesh 21 / 25

Time to consume a communication kernel in a Full-Mesh of 64 switches with 4096 total servers.

Cano et al. Routing in Full-Mesh 22 / 25

Time to consume a communication kernel in a Full-Mesh of 64 switches with 4096 total servers. TERA is 24% faster than sRINR on average!

Cano et al. Routing in Full-Mesh 22 / 25

Time to consume a communication kernel in a Full-Mesh of 64 switches with 4096 total servers. TERA is 5.1% slower than Omni-WAR on average!

Cano et al. Routing in Full-Mesh 22 / 25

Evaluation in a HyperX 2D

Time to consume an All2All and Allreduce kernel in an 8x8 HyperX network of 2 dimensions

Cano et al. Routing in Full-Mesh 23 / 25

Evaluation in a HyperX 2D

Time to consume an All2All and Allreduce kernel in an 8x8 HyperX network of 2 dimensions

Cano et al. Routing in Full-Mesh 23 / 25

Evaluation in a HyperX 2D

Time to consume an All2All and Allreduce kernel in an 8x8 HyperX network of 2 dimensions

Cano et al. Routing in Full-Mesh 23 / 25

Conclusions

No VC

Deadlock-free routing in Full-Mesh networks without Virtual Channels.

100%

Throughput gain over the previous state-of-the-art routing algorithm.

Successfully adapted to a 2D HyperX network.

Cano et al. Routing in Full-Mesh 24 / 25

Thank you! Questions?

Alejandro Cano alejandro.cano@unican.es

Reproducibility of the paper

Cano et al. Routing in Full-Mesh 25 / 25

Packet latency percentiles

Violin plots (histogram) of the packet latency.

Hyperx 2D

HyperX 2D topology.

