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Key Achievements

No VC
Deadlock-free routing
in Full-Mesh
networks without
Virtual Channels.

100%
Throughput gain
over the previous
state-of-the-art
routing algorithm.

✓
Successfully adapted
to a 2D HyperX
network.
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Full-mesh topology

8 of the top 10 supercomputers on the TOP500 list use network
topologies based on Full-Mesh.
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Routing en Full-Mesh

Non-Minimal Routing: Improving performance with 2-hop paths.
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Routing en Full-Mesh

Problem: routing-deadlock.

Routing-deadlock representation
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Deadlock Avoidance Methods

Ordering virtual channels Ordering links
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Deadlock Avoidance: Pros and Cons

Ordering Virtual Channels

+ Does not limit path
diversity

– Requires extra buffers and
arbitration logic

– Higher cost, area, and
power consumption

Ordering Links

+ No need for additional
virtual channels.

+ Simpler and cheaper to
implement.

– Limits path diversity ⇒
lower performance
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– Requires extra buffers and
arbitration logic

– Higher cost, area, and
power consumption

Ordering Links

+ No need for additional
virtual channels.

+ Simpler and cheaper to
implement.

– Limits path diversity ⇒
lower performance

Focus on improving path diversity in link ordering.

Cano et al. Routing in Full-Mesh 9 / 25



Introduction TERA: Topology Embedded Routing Algorithm Methodology and Results Conclusions

Link ordering example
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Limitations of Link Ordering

Key Limitations

Maximum availability: 2
3 of all 2-hop paths. 1

With uniform link utilization only 1
2 of the total.

Half the paths ≈ Half the throughput.

Implication
Link ordering has reached its limit. A new approach is needed.

1Kwauk et al., “BoomGate: Deadlock Avoidance in Non-Minimal Routing for
High Radix Networks”. HPCA’21. doi:10.1109/HPCA51647.2021.00064.
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Topology Embedded Routing Algorithm (TERA)

Physical partitioning of the Full-mesh:

Service network: an embedded network.

Main network: the complement of the service network.
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Topology Embedded Routing Algorithm (TERA)

At Injection Port

MIN hop

Main hop

Service hop

At In-transit Port

MIN hop

Service hop

Choose port with min w(p)

w(p) = occupancy[p] +

0, if minimal

C, if non-minimal
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Topology Embedded Routing Algorithm (TERA)

The choice of the service network directly controls two critical
network properties:

The total number of available non-minimal paths.

The maximum number of hops a packet can take.
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TERA service network

Topology Diameter #Links

Full-Mesh 1 O(n2)

Mesh O(n) O(n)

Tree O(logn) O(n)

Hypercube O(logn) O(n log n)

3D-HyperX 3 O(n1.33)

2D-HyperX 2 O(n1.50)

Properties in terms of the number of switches n.
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TERA service network

0 16 32 48 64 80 96 112 128
0

0.2

0.4

0.6

0.8

1

trend

Full-mesh size (switches)

Se
rv

ic
e

lin
ks

/
To

ta
ll

in
ks

Relative size of the service network

Mesh
Hypercube
HyperX 3D
HyperX 2D

Cano et al. Routing in Full-Mesh 18 / 25



Introduction TERA: Topology Embedded Routing Algorithm Methodology and Results Conclusions

TERA service network

0 16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5
optimal

Full-mesh size (switches)

A
cc

ep
te

d
lo

ad

Estimated performance of TERA under adverse traffic

Mesh
Hypercube
3D-HyperX
2D-HyperX

Cano et al. Routing in Full-Mesh 19 / 25



Introduction TERA: Topology Embedded Routing Algorithm Methodology and Results Conclusions

TERA service network

0 16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5
optimal

performance of link ordering schemes

Full-mesh size (switches)

A
cc

ep
te

d
lo

ad

Estimated performance of TERA under adverse traffic

Mesh
Hypercube
3D-HyperX
2D-HyperX

Cano et al. Routing in Full-Mesh 19 / 25



Methodology and Results



Introduction TERA: Topology Embedded Routing Algorithm Methodology and Results Conclusions

Methodology

Evaluated Routing Schemes in CAMINOS simulator

Omni-WAR: Baseline for Full-Mesh (2 VCs). 2

sRINR: Link ordering SOTA (1VC).

T-Hx2D: TERA with a service HyperX 2D (1 VC).

T-Hx3D: TERA with a service HyperX 3D (1 VC).

Code for reproducibility:
https://github.com/alexcano98/

TERA-routing-HOTI-2025-reproducibility

2McDonald et al., “Practical and efficient incremental adaptive routing for
HyperX networks,” in Proc. SC ’19. doi:10.1145/3295500.3356151.
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Evaluation in Full-mesh
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Random Switch Permutation

Traffic with Bernoulli generation at a different offered load in a Full-Mesh
of 64 switches with 4096 total servers.
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Traffic with Bernoulli generation at a different offered load in a Full-Mesh
of 64 switches with 4096 total servers. TERA runs without VCs!
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Evaluation in Full-mesh
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Time to consume a communication kernel in a Full-Mesh of 64 switches
with 4096 total servers. TERA is 24% faster than sRINR on average!
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Evaluation in a HyperX 2D

Omni-WAR 4VC Dim-WAR 2VC
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Time to consume an All2All and Allreduce kernel in an 8x8 HyperX
network of 2 dimensions
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Conclusions

No VC
Deadlock-free routing
in Full-Mesh
networks without
Virtual Channels.

100%
Throughput gain
over the previous
state-of-the-art
routing algorithm.

✓
Successfully adapted
to a 2D HyperX
network.
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Thank you! Questions?

Alejandro Cano

alejandro.cano@unican.es
Reproducibility
of the paper
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Hyperx 2D

HyperX 2D topology.
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