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Key Achievements

No VC 100% v

Deadlock-free routing  Throughput gain Successfully adapted
in Full-Mesh over the previous to a 2D HyperX
networks without state-of-the-art network.

Virtual Channels. routing algorithm.
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Full-mesh topology

8 of the top 10 supercomputers on the TOP500 list use network
topologies based on Full-Mesh.
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Routing en Full-Mesh

Problem: routing-deadlock.

Routing-deadlock representation UC
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Deadlock Avoidance: Pros and Cons

Ordering Virtual Channels Ordering Links
+ Does not limit path + No need for additional
diversity virtual channels.
— Requires extra buffers and + Simpler and cheaper to
arbitration logic implement.
— Higher cost, area, and — Limits path diversity =
power consumption lower performance
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Ordering Virtual Channels Ordering Links
+ Does not limit path + No need for additional
diversity virtual channels.
— Requires extra buffers and + Simpler and cheaper to
arbitration logic implement.
— Higher cost, area, and — Limits path diversity =
power consumption lower performance

Focus on improving path diversity in link ordering.

Routing in Full-Mesh TS
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Limitations of Link Ordering

Key Limitations

m Maximum availability: % of all 2-hop paths. !

"Kwauk et al., “BoomGate: Deadlock Avoidance in Non-Minimal Routing for Uc
High Radix Networks". HPCA'21. doi:10.1109/HPCA51647.2021.00064.
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Limitations of Link Ordering

Key Limitations

Introduction TERA: Topology Embedded Routing Algorithm Methodology and Results Conclusions

m Maximum availability: % of all 2-hop paths. !
m With uniform link utilization only % of the total.
m Half the paths ~ Half the throughput.

Implication
Link ordering has reached its limit. A new approach is needed.

"Kwauk et al., “BoomGate: Deadlock Avoidance in Non-Minimal Routing for Uc
High Radix Networks". HPCA'21. doi:10.1109/HPCA51647.2021.00064.
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Topology Embedded Routing Algorithm (TERA)

Physical partitioning of the Full-mesh:
m Service network: an embedded network.

m Main network: the complement of the service network.

m
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Physical partitioning of the Full-mesh:
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m Service network: a deadlock-free set of paths.

m Main network: no restriction in the use.
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Topology Embedded Routing Algorithm (TERA)
At Injection Port At In-transit Port
m MIN hop m MIN hop
m Main hop m Service hop

m Service hop

Choose port with min w(p)

0, if minimal
w(p) = occupancy[p] +
C, if non-minimal
uc

Routing in Full-Mesh ==



Introduction TERA: Topology Embedded Routing Algorithm Methodology and Results Conclusions
0000000000 000000000 00000 000

Topology Embedded Routing Algorithm (TERA)

The choice of the service network directly controls two critical
network properties:

m The total number of available non-minimal paths.

m The maximum number of hops a packet can take.
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TERA service network

Topology Diameter  #Links
Full-Mesh 1 O(n?)
Mesh O(n) O(n)
Tree O(logn) O(n)
Hypercube O(logn) O(nlogn)
3D-HyperX 3 O(n'33)
2D-HyperX 2 O(n'0)

Properties in terms of the number of switches n.
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TERA service network
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TERA service network

Estimated performance of TERA under adverse traffic
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Estimated performance of TERA under adverse traffic

0.5
< 04
©
o
32 03
§ performance of link ordering schemes
S 0.2
< —a—  Mesh
—— Hypercube
0.1 —=—3D-HyperX [
—e— 2D-HyperX
0

I I I
0 16 32 48 64 80 96 112 128
Full-mesh size (switches)

ucC

Routing in Full-Mesh s



Methodology and Results




Methodology and Results
(o] lelele]

Methodology

Evaluated Routing Schemes in CAMINQOS simulator

m Omni-WAR: Baseline for Full-Mesh (2 VCs). 2

m sRINR: Link ordering SOTA (1VC).

m [-Hx2D: TERA with a service HyperX 2D (1 VC).
m [-Hx3D: TERA with a service HyperX 3D (1 VC).

Code for reproducibility:
https://github.com/alexcano98/
TERA-routing-HOTI-2025-reproducibility

2McDonald et al., “Practical and efficient incremental adaptive routing for Uc
HyperX networks,” in Proc. SC '19. doi:10.1145/3295500.3356151.
B Y


https://github.com/alexcano98/TERA-routing-HOTI-2025-reproducibility
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Evaluation in Full-mesh
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Traffic with Bernoulli generation at a different offered load in a Full-Mesh
of 64 switches with 4096 total servers.
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Evaluation in Full-mesh

| —6— Omni-WAR —— sRINR —e— TERA-HX2 —5— TERA-HX3 —— MIN/VLB |
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Offered load Offered load

Traffic with Bernoulli generation at a different offered load in a Full-Mesh
of 64 switches with 4096 total servers. TERA runs without VCs!
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Evaluation in Full-mesh
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Time to consume a communication kernel in a Full-Mesh of 64 switches
with 4096 total servers.
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Time to consume a communication kernel in a Full-Mesh of 64 switches
with 4096 total servers. TERA is 24% faster than sRINR on average!
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Time to consume a communication kernel in a Full-Mesh of 64 switches
with 4096 total servers. TERA is 5.1% slower than Omni-WAR on
average!
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Evaluation in a HyperX 2D
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network of 2 dimensions
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Deadlock-free routing
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Packet latency percentiles
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