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Memory Challenges in Scaling Large Language Models

GPU Memory Limitations

v The growth rate of high-bandwidth memory (HBM) per 
GPU is much slower than the rapid scaling of Large 
Language Models (LLMs).

v The growing gap limits batch size scaling and adds 
distributed training/inference complexity.

H100 OPs:Bytes
Memory Bound

Compute Bound

Training

Inference

Arithmetic Intensity Variations

v LLM models exhibit diverse arithmetic intensities across 
workloads for training and inference, as well as between 
the prefill and decode stages of inference.

v Each workload (or stage) imposes unique demands on 
compute power and memory bandwidth.

> 𝟏𝟎𝟐 Gap
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Current Compute & Memory Pooling Architecture

v HBMs are placed around the periphery of the compute die using short-reach electrical I/Os. 
Ø HBM’s wide I/O and high pin count requires short electrical traces, restricting it to areas near the compute die. 
Ø Compute die's periphery length restricts the number of HBMs that can be integrated locally.
Ø Limited memory capacity scaling.

v Memory Pooling: compute pool connects to memory pool via a high-speed electrical interconnect.
Ø Local HBMs serve as high-bandwidth memory suppliers (lower capacity).
Ø Remote memory units (e.g., DDR, GDDR) act as capacity expanders via an electrically interconnected fabric.
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Enabling Silicon Photonic Technologies

Custom Designed Transceiver PIC [1]

Co-Packaged/Embedded Photonic I/Os

[1] Wang, Yuyang, et al. “Co-designed silicon photonics chip i/o for energy-efficient petascale connectivity.” IEEE Transactions on Components, Packaging and Manufacturing Technology. IEEE, 2024
[2] Dai, Liang Yuan, et al. "Ultra-scalable microring-based architecture for spatial-and-wavelength selective switching." 2023 IEEE Silicon Photonics Conference (SiPhotonics). IEEE, 2023.
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SOTA GPU 
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Compute die’s shoreline width is used a critical resource. 

Unified high-bandwidth domain for 
memory and network communication

(16 Tbps)
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SiPAM: Silicon Photonic Accelerated Memory-Pooling

v SiP I/Os: 3D integrated EIC and PIC through flip-chip bonding
Ø Each SiP I/O : 16 links × 32 𝜆 / link × 32 Gbps / 𝜆 = 2 TBps

v Number of integratable I/Os: 𝑁$% = 𝑊&/𝑊$%

Ø 𝑊& = Available compute die shoreline width
Ø 𝑊$% = Edge width per SiP I/O
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v Memory Pool: Optically Connected Multi-Stack HBM [3]
Ø Multiple HBMs connect to a single SiP I/O chiplet

v Number of integratable MUs / IO: 𝑁' = 𝐵$%/𝐵'
Ø 𝐵$% = SiP I/O bandwidth
Ø 𝐵'= MU bandwidth

[3] Ou, Y., Zhang, H., Rovinski, A., Wentzlaff, D., & Batten, C. (2025). Optically Connected Multi-Stack HBM Modules for Large Language Model Training and Inference. IEEE Computer Architecture Letters.
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SiPAM: Silicon Photonic Accelerated Memory-Pooling

[4] Michelogiannakis, George, et al. "Efficient intra-rack resource disaggregation for HPC using co-packaged DWDM photonics." 2023 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2023.
[5] Cho, A., Saxena, A., Qureshi, M., & Daglis, A. (2024, November). COAXIAL: A CXL-centric memory system for scalable servers. In SC24.
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v Each SiP I/O can be flexibly allocated for high-speed memory access or network communication.
Ø One-shot reconfiguration per workload.

v SiPAC’s physical design: replaces electrical packet switches (EPS) with optical circuit switches (OCS) in a BCube topology
Ø Intra-rack resource disaggregation model [4] for a bounded increase in memory latency.

v CXL is a promising memory semantic interconnect technology: 
Ø Increased memory latency can be mitigated by increasing CXL bandwidth when the memory system is fully loaded [5].
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Optimization Methodology

Goal: Determine the optimal configuration for compute power, memory bandwidth, and capacity for each workload.

v Compute Intensity (CI): # of required
FLOPs per byte of data loaded to keep 
cores active.

𝐶𝐼 =
Peak FLOPs/s
Bandwidth()(

=
FLOPs
Byte

Hardware

𝐴𝐼 =
FLOPs
Byte

v Arithmetic Intensity (AI): # of actual
FLOPs performed for each byte of data 
loaded.
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Optimization Methodology

Peak Compute FLOPs(1)

𝑭𝒑𝒆𝒂𝒌 FLOPs/s

Workload Arithmetic Intensity(2)
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Distribution of SiP I/Os for memory 
and network communication

(5)

SiP I/O for memory SiP I/O for network

Number of CUs + parallelisms(6)

𝑵𝒄 = 𝒇(𝑪𝒘, 𝑵𝒎, 𝑪𝒎)

Goal: Determine the optimal configuration for compute power, memory bandwidth, capacity for each workload.
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v Arithmetic Intensity: profiled using Calculon
v Capacity Requirement: profiled using Calculon
v Baseline Configuration:

v NVLink (scale-up) + InfiniBand (scale-out)
v SiPAM Configuration: 

v SiPAC network
v Optimized # GPUs, memory capacity and 

bandwidth

Workload & Configurations

Evaluation Setup – Calculon [6]

SiPAM Configuration:
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Hardware – Nvidia GPU Based

Single CU FP16
TFLOPs 

Mem Cap 
(GB)

Mem BW 
(TBps)

Nvidia A100 312 40 1.5

Nvidia H100 1000 80 3

Nvidia B100 3500 192 8

SiPAM* 3500 Up to 720 Up to 30

* Assuming B100 as CU and HBM3E as MU

Cluster of 
1024 CUs

FP16
PFLOPs 

Mem Cap 
(TB)

Mem BW 
(PBps)

Nvidia A100 320 41 1.5

Nvidia H100 1024 82 3.1

Nvidia B100 3584 197 8.2

SiPAM* 3584 Up to 737 Up to 31

v Cluster Size: up to 1024 GPUs

SiPAM Configuration:
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Simulation Results - Training
v Workloads: Megatron-126M/5B/22B/40B/1T, Anthropic 52B, Chichilla-64B, GPT3-175B (Training)
v Baseline: Up to 256 B100 GPUs each with fixed 192 GB HBM memory @ 8 TBps total memory bandwidth
v SiPAM: Up to 256 GPUs, with compute, memory bandwidth, and capacity optimized based on each workload

a) SiPAM tracks arithmetic intensity closely, while the baseline remains constant
b) SiPAM improves training time by up to 3.5x

Lower is Better
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Simulation Results - Inference

a) SiPAM tracks arithmetic intensity closely, while the baseline remains constant
b) SiPAM improves inference time by up to 3.5x

Lower is Better

v Workloads: Megatron-126M/5B/22B/40B/1T, Anthropic 52B, Chichilla-64B, GPT3-175B (Inference)
v Baseline: Up to 64 B100 GPUs each with fixed 192 GB HBM memory @ 8 TBps total memory bandwidth
v SiPAM: Up to 64 GPUs, with compute, memory bandwidth, and capacity optimized based on each workload
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Performance Under Limited Compute Resource

v Configurations:
v Workload: GPT3-175B and Megatron-1T
v Red cells: no feasible parallelization strategy
v Darker color: higher iteration time

v Takeaway: SiPAM consistently enables feasible 
deployment of larger models under constrained GPU 
resources
v SiPAM flexibly allocates memory capacity and 

bandwidth.
v For a fixed GPU-HBM combination, iteration 

time decreases as the number of available 
GPUs increases.

v For a fixed number of GPU, newer GPU 
generations yield lower iteration time.
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Compute & Memory Technology Scaling

A100 H100 B100

Inference

A100 H100 B100

Training v Configurations:
v Workload: GPT3-175B
v Network size: 128 GPUs
v Cross GPU-HBM pairing

v Takeaway: SiPAM consistently 
outperforms the baseline by allocating the 
needed compute and memory resources
v Newer GPU generations outperform 

earlier ones.
v For each GPU generation, 

performance improves as memory 
generation advances.
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System Efficiency Analysis

H100 (HBM2E)A100 (HBM2)

Relative Performance Relative PerformanceRelative Performance

B100 (HBM3E)

𝟓. 𝟒𝟔×2.52×
𝟓. 𝟏𝟓×

v Configurations:
v Workload: Megatron-1T
v Metrics: System Efficiency & Iteration Time (inset shows relative performance)

v SiPAM consistently outperforms the baseline in both efficiency and iteration time.

System Efficiency = *%&'()*+

**&*,-
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SiP I/O Bandwidth Scaling

Megatron-1B
Training

Megatron-1B
Inference

Megatron-1T
Inference

Megatron-1T
Training

v Configurations:
v Workload: Megatron-1T & Megatron-1T
v Per I/O Bandwidth: 512 Gbps to 16 Tbps
v Total injection bandwidth / GPU: 

v A100/H100: 6 Tbps to 192 Tbps
v B100: 7.6 Tbps to 240 Tbps

v Takeaway: Newer GPU generations with higher 
compute capability require greater memory 
bandwidth to achieve continued performance 
scaling.

v A100 on Megatron-1B: performance plateaus
v Compute throughput becomes saturated
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Conclusion

• Problems addressed: memory capacity & bandwidth bottlenecks in AI/ML
• Design:

– Direct photonic integration along the perimeter of the compute die
– Unified high-bandwidth communication domain

• Optimization: co-designed roofline-model based allocation algorithm
• Results:

– Showed up to 3.5x faster iteration time
– Highlights the critical need for bandwidth scaling in next-generation compute.

• Future Works:
– Cost and power modeling
– Capture network demand in addition to memory demand
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