

Silicon Photonic Accelerated Memory Pooling For Efficient Compute Resource Allocation

Zhenguo Wu and Keren Bergman zw2542@columbia.edu

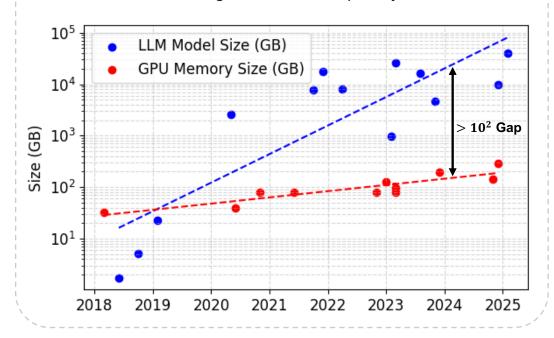
Lightwave Research Laboratory Columbia University, New York, NY

Aug 20th, 2025

Memory Challenges in Scaling Large Language Models

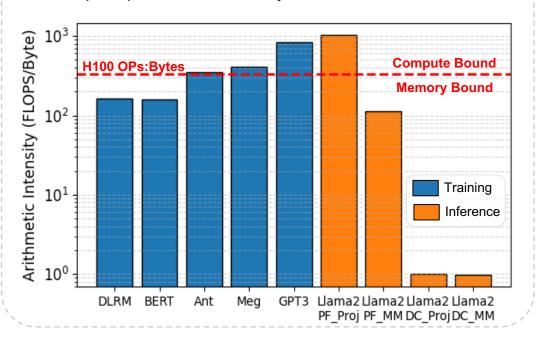
GPU Memory Limitations

- The growth rate of high-bandwidth memory (HBM) per GPU is much slower than the rapid scaling of Large Language Models (LLMs).
- The growing gap limits batch size scaling and adds distributed training/inference complexity.



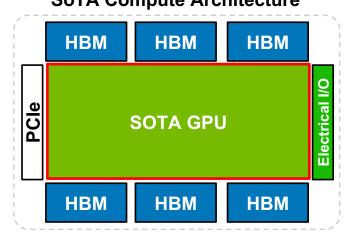
Arithmetic Intensity Variations

- LLM models exhibit diverse arithmetic intensities across workloads for training and inference, as well as between the prefill and decode stages of inference.
- Each workload (or stage) imposes unique demands on compute power and memory bandwidth.

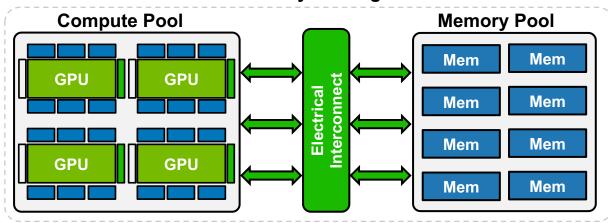


Current Compute & Memory Pooling Architecture

SoTA Compute Architecture

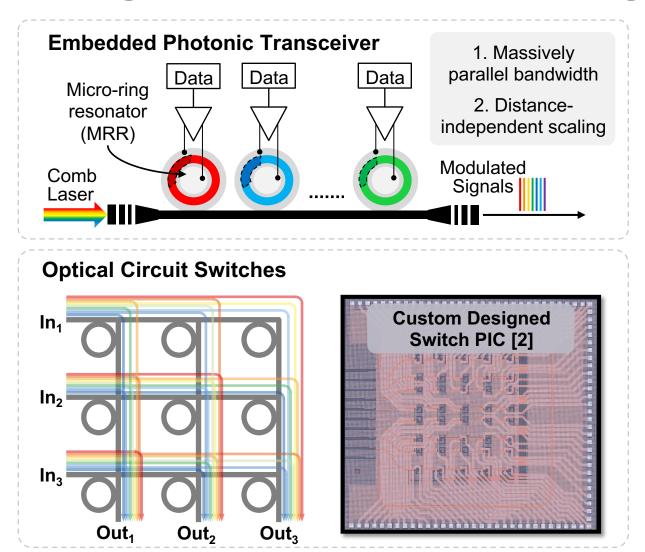


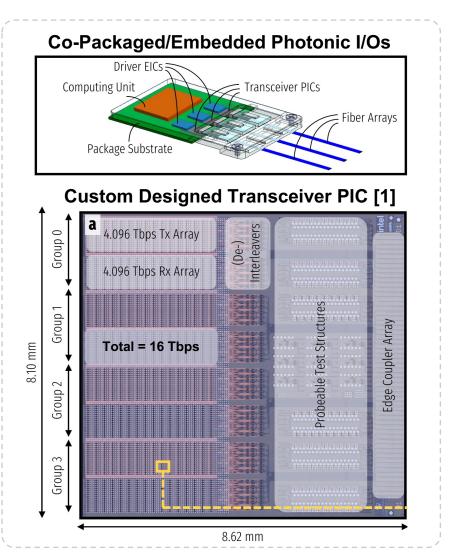
Current Memory Pooling Architecture



- **❖** HBMs are placed around the periphery of the compute die using short-reach electrical I/Os.
 - > HBM's wide I/O and high pin count requires short electrical traces, restricting it to areas near the compute die.
 - Compute die's periphery length restricts the number of HBMs that can be integrated locally.
 - Limited memory capacity scaling.
- Memory Pooling: compute pool connects to memory pool via a high-speed electrical interconnect.
 - Local HBMs serve as high-bandwidth memory suppliers (lower capacity).
 - Remote memory units (e.g., DDR, GDDR) act as capacity expanders via an electrically interconnected fabric.

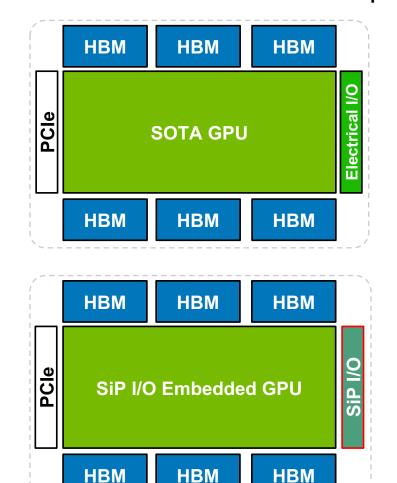
Enabling Silicon Photonic Technologies

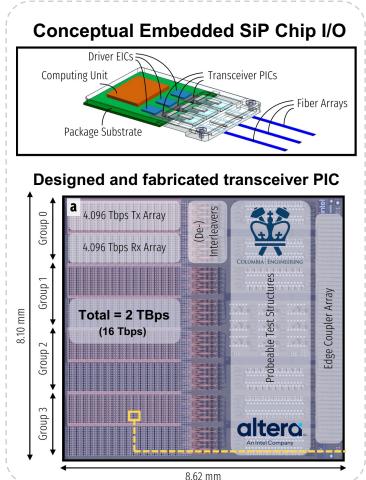


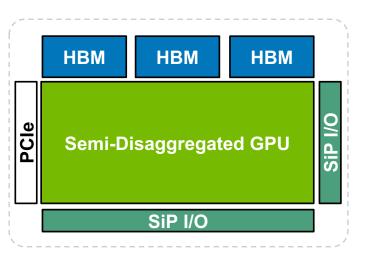


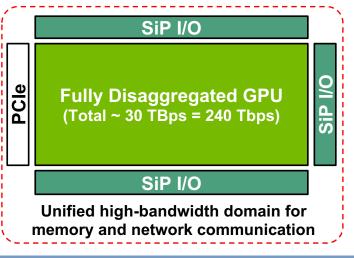
Expanding the Memory Pooling Design Space

Compute die's *shoreline width* is used a critical resource.

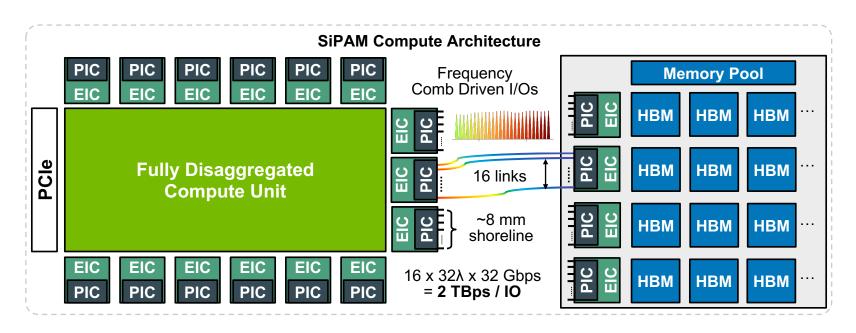


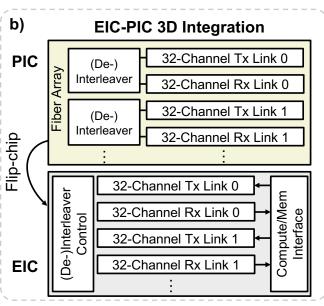






SiPAM: Silicon Photonic Accelerated Memory-Pooling

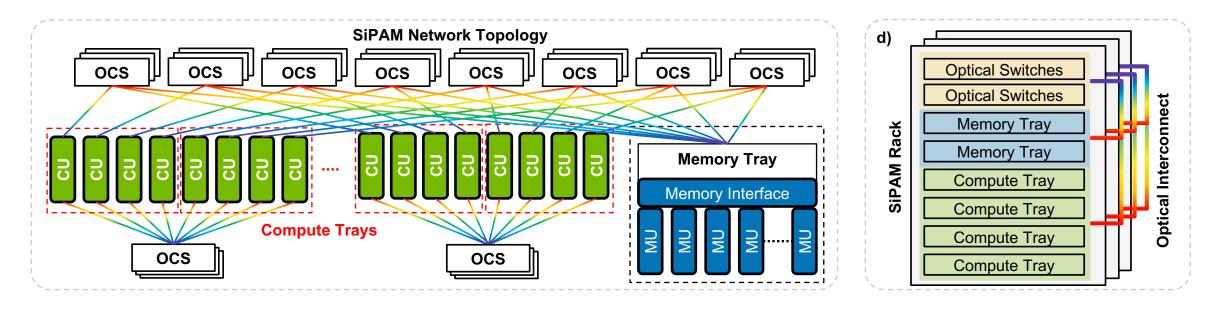




- ❖ SiP I/Os: 3D integrated EIC and PIC through flip-chip bonding
 - Fach SiP I/O : 16 links × 32 λ / link × 32 Gbps / λ = 2 TBps
- Number of integratable I/Os: $N_{IO} = [W_D/W_{IO}]$
 - $\succ W_D$ = Available compute die shoreline width
 - \rightarrow W_{IO} = Edge width per SiP I/O

- Memory Pool: Optically Connected Multi-Stack HBM [3]
 - Multiple HBMs connect to a single SiP I/O chiplet
- Number of integratable MUs / IO: $N_m = \lfloor B_{IO}/B_m \rfloor$
 - \triangleright B_{IO} = SiP I/O bandwidth
 - \triangleright B_m = MU bandwidth

SiPAM: Silicon Photonic Accelerated Memory-Pooling



- Each SiP I/O can be flexibly allocated for high-speed memory access or network communication.
 - One-shot reconfiguration per workload.
- SiPAC's physical design: replaces electrical packet switches (EPS) with optical circuit switches (OCS) in a BCube topology
 - ➤ Intra-rack resource disaggregation model [4] for a bounded increase in memory latency.
- CXL is a promising memory semantic interconnect technology:
 - > Increased memory latency can be mitigated by increasing CXL bandwidth when the memory system is fully loaded [5].

Optimization Methodology

Goal: Determine the optimal configuration for **compute power**, **memory bandwidth**, and **capacity** for each workload.

Hardware

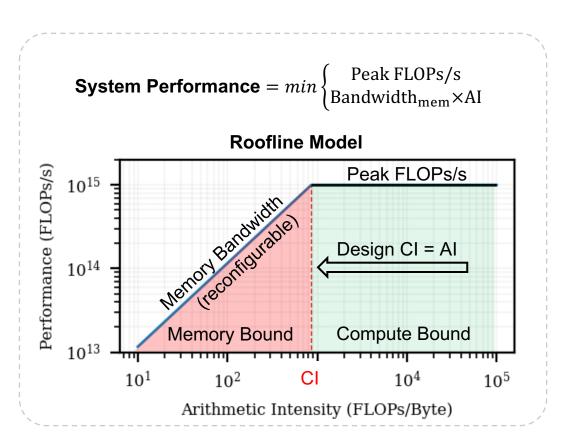
Compute Intensity (CI): # of required FLOPs per byte of data loaded to keep cores active.

$$CI = \frac{\text{Peak FLOPs/s}}{\text{Bandwidth}_{\text{mem}}} = \frac{\text{FLOPs}}{\text{Byte}}$$

Workload

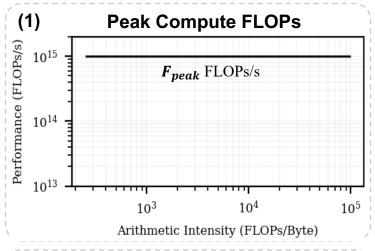
Arithmetic Intensity (AI): # of actual FLOPs performed for each byte of data loaded.

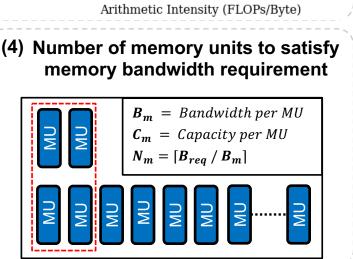
$$AI = \frac{\text{FLOPs}}{\text{Byte}}$$

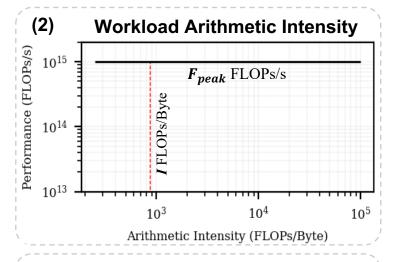


Optimization Methodology

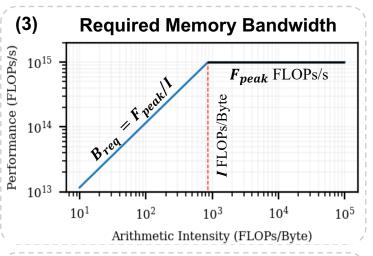
Goal: Determine the optimal configuration for **compute power**, **memory bandwidth**, **capacity** for each workload.

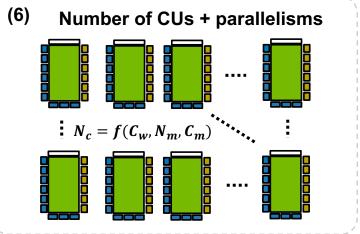








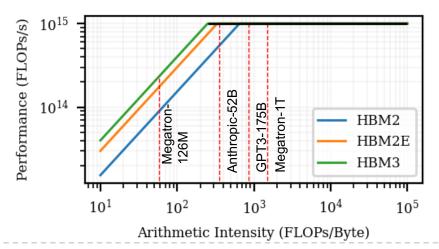


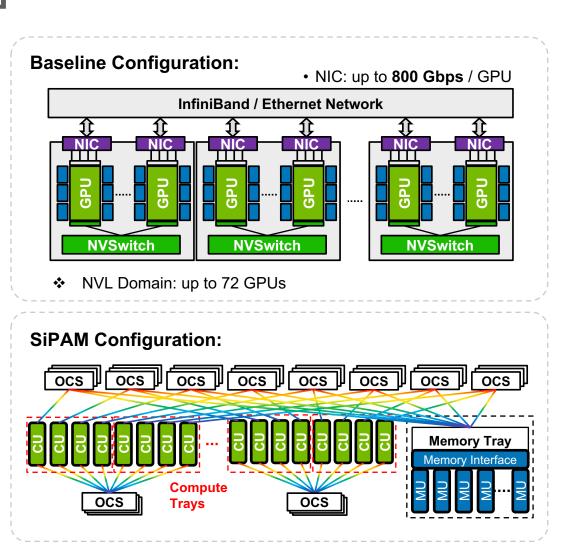


Evaluation Setup – Calculon [6]

Workload & Configurations

- Arithmetic Intensity: profiled using Calculon
- Capacity Requirement: profiled using Calculon
- Baseline Configuration:
 - NVLink (scale-up) + InfiniBand (scale-out)
- **SiPAM Configuration:**
 - SiPAC network
 - Optimized # GPUs, memory capacity and bandwidth





Evaluation Setup – Calculon [6]

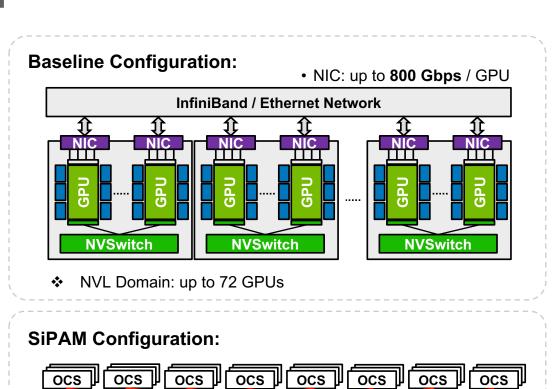
Hardware – Nvidia GPU Based

Single CU	FP16 TFLOPs	Mem Cap (GB)	Mem BW (TBps)
Nvidia A100	312	40	1.5
Nvidia H100	1000	80	3
Nvidia B100	3500	192	8
SiPAM*	3500	Up to 720	Up to 30

❖ Cluster Size: up to 1024 GPUs

Cluster of 1024 CUs	FP16 PFLOPs	Mem Cap (TB)	Mem BW (PBps)
Nvidia A100	320	41	1.5
Nvidia H100	1024	82	3.1
Nvidia B100	3584	197	8.2
SiPAM*	3584	Up to 737	Up to 31

^{*} Assuming B100 as CU and HBM3E as MU



ocs

Compute

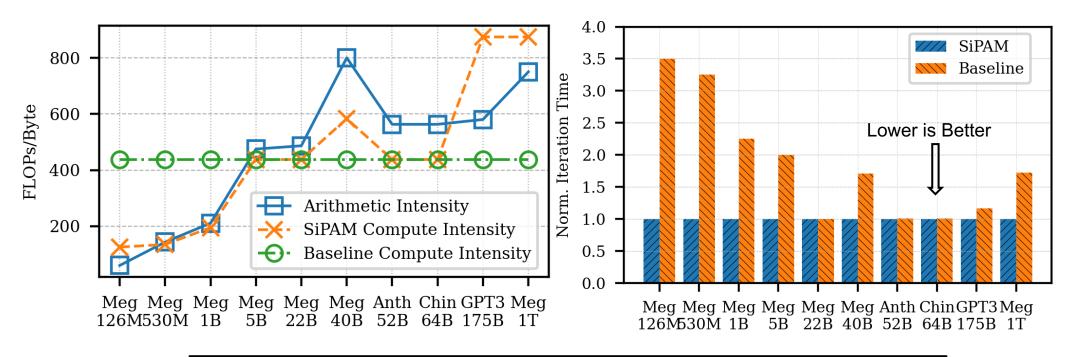
Trays

ocs

Memory Tray

Simulation Results - Training

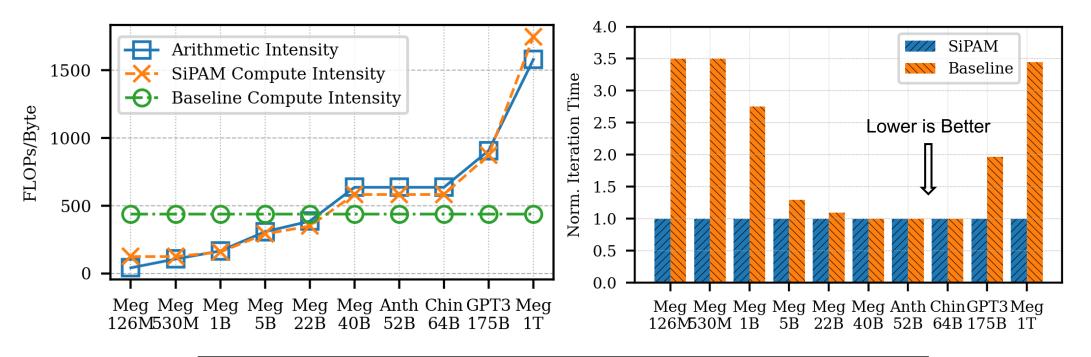
- ❖ Workloads: Megatron-126M/5B/22B/40B/1T, Anthropic 52B, Chichilla-64B, GPT3-175B (Training)
- ❖ Baseline: Up to 256 B100 GPUs each with fixed 192 GB HBM memory @ 8 TBps total memory bandwidth
- ❖ SiPAM: Up to 256 GPUs, with compute, memory bandwidth, and capacity optimized based on each workload



- a) SiPAM tracks arithmetic intensity closely, while the baseline remains constant
- o) SiPAM improves training time by up to **3.5x**

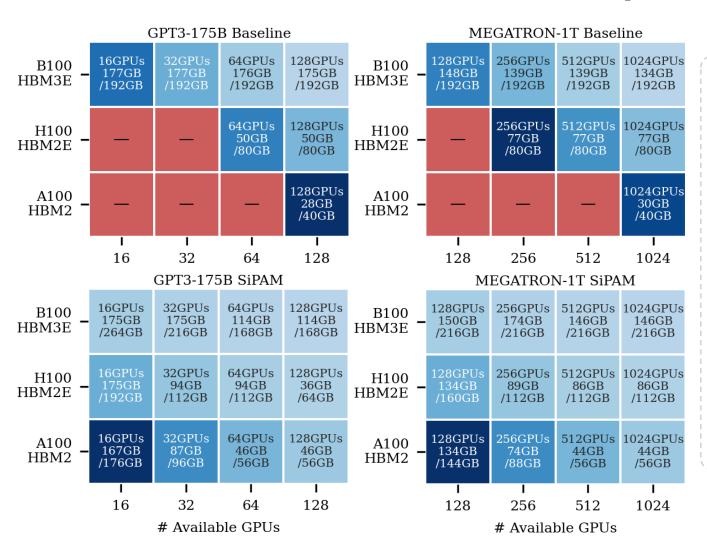
Simulation Results - Inference

- ❖ Workloads: Megatron-126M/5B/22B/40B/1T, Anthropic 52B, Chichilla-64B, GPT3-175B (Inference)
- ❖ Baseline: Up to 64 B100 GPUs each with fixed 192 GB HBM memory @ 8 TBps total memory bandwidth
- ❖ SiPAM: Up to 64 GPUs, with compute, memory bandwidth, and capacity optimized based on each workload



- a) SiPAM tracks arithmetic intensity closely, while the baseline remains constant
- b) SiPAM improves inference time by up to **3.5x**

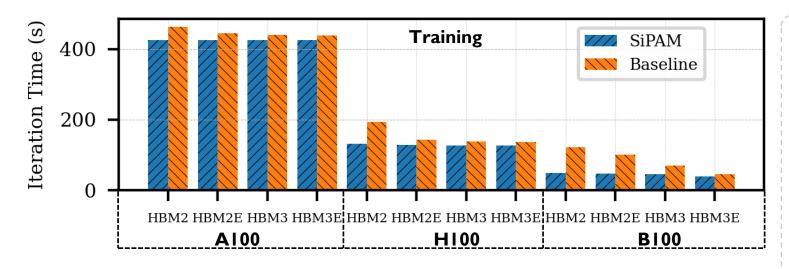
Performance Under Limited Compute Resource

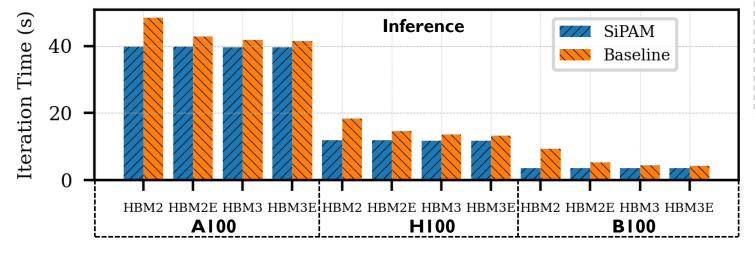


❖ Configurations:

- ❖ Workload: GPT3-175B and Megatron-1T
- Red cells: no feasible parallelization strategy
- Darker color: higher iteration time
- Takeaway: SiPAM consistently enables feasible deployment of larger models under constrained GPU resources
 - SiPAM flexibly allocates memory capacity and bandwidth.
 - For a fixed GPU-HBM combination, iteration time decreases as the number of available GPUs increases.
 - For a fixed number of GPU, newer GPU generations yield lower iteration time.

Compute & Memory Technology Scaling





❖ Configurations:

Workload: GPT3-175B

Network size: 128 GPUs

Cross GPU-HBM pairing

- Takeaway: SiPAM consistently outperforms the baseline by allocating the needed compute and memory resources
 - Newer GPU generations outperform earlier ones.
 - For each GPU generation, performance improves as memory generation advances.

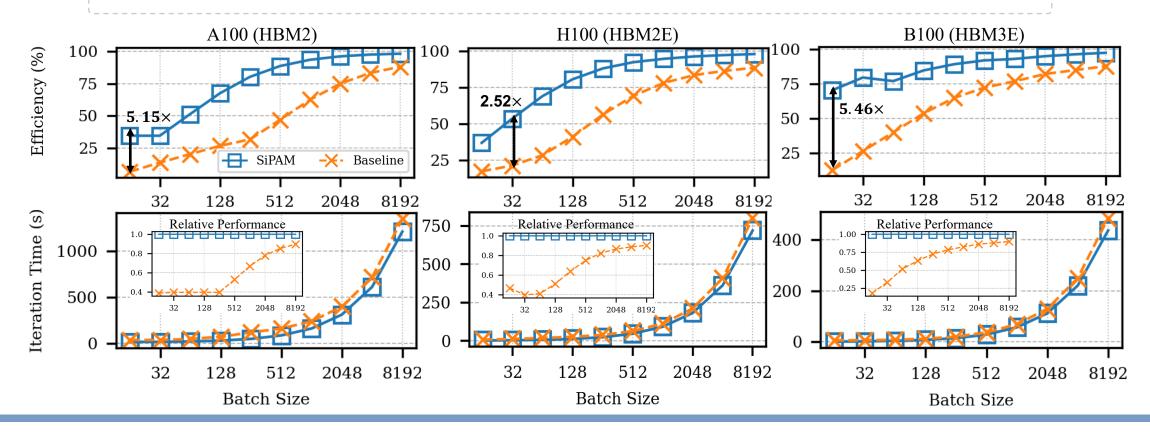
System Efficiency Analysis

❖ Configurations:

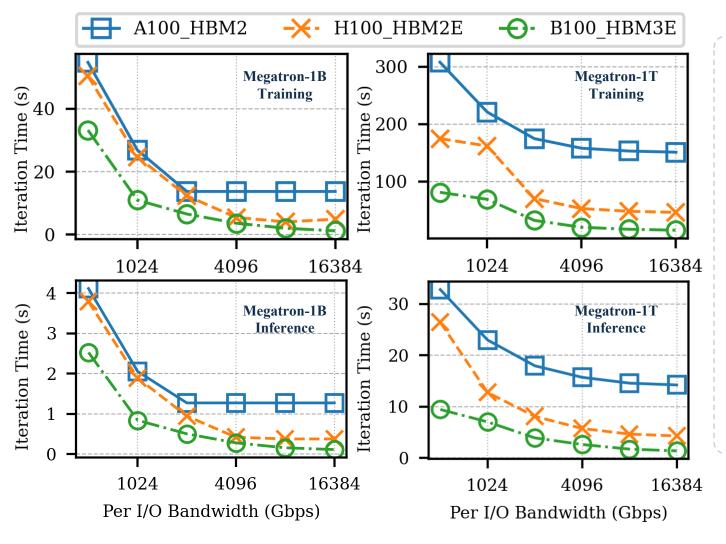
❖ Workload: Megatron-1T

System Efficiency = $\frac{T_{compute}}{T_{total}}$

- Metrics: System Efficiency & Iteration Time (inset shows relative performance)
- SiPAM consistently outperforms the baseline in both efficiency and iteration time.



SiP I/O Bandwidth Scaling



❖ Configurations:

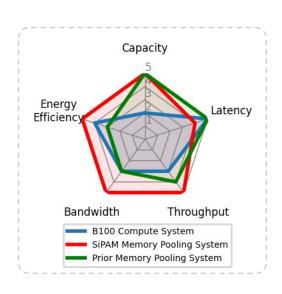
- ❖ Workload: Megatron-1T & Megatron-1T
- ❖ Per I/O Bandwidth: 512 Gbps to 16 Tbps
- Total injection bandwidth / GPU:
 - ❖ A100/H100: 6 Tbps to 192 Tbps
 - ❖ B100: 7.6 Tbps to 240 Tbps
- ❖ Takeaway: Newer GPU generations with higher compute capability require greater memory bandwidth to achieve continued performance scaling.
- ❖ A100 on Megatron-1B: performance plateaus
 - Compute throughput becomes saturated

Conclusion

- Problems addressed: memory capacity & bandwidth bottlenecks in AI/ML
- Design:
 - Direct photonic integration along the perimeter of the compute die
 - Unified high-bandwidth communication domain
- Optimization: co-designed roofline-model based allocation algorithm
- Results:
 - Showed up to 3.5x faster iteration time
 - Highlights the critical need for bandwidth scaling in next-generation compute.

• Future Works:

- Cost and power modeling
- Capture network demand in addition to memory demand



Acknowledgement

