HIDL

High-Performance
Deep Learning

Characterizing Communication Patterns in
Distributed Large Language Model Inference

Presented at Hot Interconnects ’25

Lang Xu, Kaushik Kandadi Suresh, Quentin Anthony,

Nawras Alnaasan, and Dhabaleswar K (DK) Panda

Department of Computer Science and Engineering,

The Ohio State University, Columbus, Ohio, USA



Presentation Outline

* Introduction and Motivation

* Problem statements

* Analytical Model

* Analysis and Performance Characterization

e Conclusion

Hot Interconnects ’25



Large Language Model Inference

* Inference: The process of using a pre-trained Large Language Model to generate text
or predict on a given input (prompt)

 Emergent capabilities comes with scaling inference-time compute
. Reasoning, Decision Making, Coding
. Reinforcement Learning (GRPO, DPO)
. Better Models (DeepSeek-R1, Gemini 2.5 Pro, OpenAl-03)

Complex Large Language Model

capability emerges with computation

resources allocated to Inference! Status Quo

Foundation Model

(\ Test-time Scaling

Courtesy: “A Survey on Test-Time Scaling in Large Language Models: What, How, Where, and How Well?“
https://arxiv.org/abs/2503.24235

Hot Interconnects ’25



Large Language Model Inference

© Computation ™ Communication

100%
e Similar to Pre-Training, Inferencing has similar challenges:
. Multi-GPU deployment (Tensor/Pipeline Parallelism) 75%
. Communication overhead >
. T 50%
*  Prefill-Decode Stages (compute-bound vs memory-bound) ¢
o
. Unigue communication pattern 25%
* Service-level objectives (SLOs)
0%
. Latency, time-to-first-token (TTFT), time-per-output-token(TPOT) TP=4 PP=1 TP=1PP=4
Parallelism Layout
KT
Input
Model = e Embesdng { Q 9 ]d " v
;I: <best> Sp head
) <.sn>ack> ﬁ
[LIHLZHL3HL4] E <is ._,_.dhd ‘_S'_'
/ Pipeline Parallel \ / Tensor Parallel \ [ Computedon this step Unembedding
GPU Taken from KV cache <Cheese> h :Ii
GPU, GPU, [ — @ TTTTT T TTTT T TTTT oo TmmmmT
L1 L2 L3 L4 ] ] _ —
0 o 3 5D o D | O o
eaucescatter u W Q
[[u A BE L4]J S e W 9¢ K|
) MMM ‘T—’
\ / \ GPU, / a I head

Hot Interconnects ’25



Presentation Outline

* Problems statements
* Analytical Model
* Analysis and Performance Characterization

e Conclusion

Hot Interconnects ’25



Problem Statements

e What are the predominant types, volumes and patterns of

communication during multi-GPU inferencing?

* Can we develop analytical models to predict such communication
with certain parameters? Parallelism degree, model architecture
and such?

* What is the impact of communication patterns when it comes to
SLOs?

 Given a set of resources, what is the comparative impact of different
parallelism layout?

Hot Interconnects ’25



Presentation Outline

* Analytical Model

* Analysis and Performance Characterization

e Conclusion

Hot Interconnects ’25



Analytical Model

*  Modeling communication volume across different parallelism layout.

 Covering Tensor/Pipeline/Hybrid Parallelism

e VvLLM Framework + Llama-based dense transformer architecture

Q Ty O N

Hidden dimension size
Number of transformer layers
Bytes per element

Prefill sequence-length
Number of attention heads

4

p
%

Sd
dhead

Tensor-parallel size
Pipeline-parallel size
Vocabulary size

Decode sequence-length
Head dimension

Hot Interconnects ’25



Analytical Model — Tensor Parallelism

* Tensor Parallelism: Distributed matrix multiplication
across GPUs

* Row-Parallel linear layer: input partitioned along 15t
dimension, weight along 2"? dimension

* One All-reduce synchronization per layer

 Each Transformer block:
. MLP down-projection

. Attention output projection

. A total of 2 All-reduce at message size of h elements

1 All-reduce at Embedding layer per token

1 Gather at final logit computation per generated token

t—1

h Hidden dimension size t Tensor-parallel size
L Number of transformer layers p Pipeline-parallel size
b Bytes per element % Vocabulary size
Sp | Prefill sequence-length Sa Decode sequence-length
a Number of attention heads dnead | Head dimension
[ ] /f//r —————————————————————————————— :\\\\ N
.
ﬂ %; i g w I ‘ = (0) 9 3
* >2r—b§¢pc:>¢=b r>‘-8 8:5#:98 ﬂ%w@w<
S| 1@ | B 8 |c| (8
3 1B | =
| Model Model
\._Parallel \..__Parallel
2 All-Reduce 2 All-Reduce
(forward + backward) (forward + backward)

Courtesy: “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism”
http://arxiv.org/abs/1909.08053

Vip = 2L+1) % (Sp+54—1) xhxbx2 — +Sd><%><b

Hot Interconnects ’25



Analytical Model — Pipeline Parallelism

 Pipeline Parallelism: Places a subset of transformer
layers among GPUs, passing activations using P2P send

& receive h Hidden dimension size t Tensor-parallel size
P
; ) ; L Number of transformer layers p Pipeline-parallel size
° Prefill: each plpellne stage forwards ZSp hb byteS b Bytes per element v Vocabulary size
Sp | Prefill sequence-length Sq Decode sequence-length
a Number of attention heads dnead | Head dimension

« Decode: 2hb bytes per generated token

*  Number of links: p-1

1St pipeline rank receives no input, the last pipeline rank
produces no intermediate output

Vpp:(p_l)XQX(Sp+Sd—1)XhXb

Hot Interconnects ’25



Analytical Model — Hybrid Parallelism

*  Hybrid Parallelism: Combining Tensor & Pipeline Parallelism
 Great for Multi-Node setup as we want to minimize inter-node communication overhead
 Additional All-gather to redistribute activations among tensor parallel workers

 For the 1% pipeline rank, we have an additional embedding All-reduce volume of (Sp+S4-1)*h*b
bytes

Vhyb’rid — Vallreduce + Vallgather + Vgather =+ ‘/pr

2L t—1
Valireduce = s X (Sp+Sa—1)xhxbx?2 (T)_ All-reduce volume reduced by p for pipeline parallel

t—1
Vallgather =2(p — 1) X (Sp +Sa—1) X h x b X (T)

vV h Hidden dimension size t Tensor-parallel size
V ather — S d X — X b L Number of transformer layers p Pipeline-parallel size
g t b Bytes per element % Vocabulary size
Sp | Prefill sequence-length Sq Decode sequence-length
a Number of attention heads dnead | Head dimension

h
Vpgpz(p—l)x2><(5p+5d—1)><?><b

Hot Interconnects ’25



Presentation Outline

* Analysis and Performance Characterization

e Conclusion

Hot Interconnects ’25



Experimental Setup

Hardware:

e (OSC Cardinal system
— Intel Xeon Platinum 8470 (52 cores, 2 GHz)
— 4 NVIDIA H100 (NVLink, 94 GB HBM2e)
— InfiniBand NDR40O (4 NICs/Node)
Software packages:
e PyTorch 2.6 (torch.compile off + no custom allreduce)
e vLLM 0.8.5.postl VO engine
e NCCL2.21.5
Models:
e Llama-3.2-3B (h=3072, L=28, v=128256, Dense)
e Llama-3.1-8B (h=4096, L=32, v=128256, Dense)
e Llama-2-13B (h=5120, L=40, v=32000, Dense)
Serving Configuration: Single Request, Batch Size 1
Profiling: PyTorch Profiler + vLLM RESTful observability API

Hot Interconnects ’25



Performance Analysis: Message Size and Frequency

Prefill Stage

Model | TP Size | | Decode Stage
| | Collective Count Shape | Collective Count Shape
Llama 3.1- Allreduce 65 [128,4096] Allreduce 8255 [1,4096]
Gather 1 [64128] Gather 127 [64128]
Sp B 132 Allreduce 65 [128,4096] Allreduce 8255 [1, 4096]
d = Gather 1 [32064] Gather 127 [32064]

TABLE III: Message size and frequency breakdown for intra-node TP using Llama-3.1-8B

| Llama-3.2-3B | Llama-3.1-8B | Llama-2-13B
Message Size (bytes) 786432 6144 1048576 8192 1310720 10240
Count 57 7239 65 8255 81 10287

TABLE IV: Allreduce message size and count comparison across models for end-to-end inference

e Tensor Parallelism

e All-reduce frequency depends on # Transformer layers and Decoding Steps

e Message Size depends on sequence length and hidden dimension

Hot Interconnects ’25



Performance Analysis: Message Size and Frequency

Model | PP Size | Prefill Stage | Decode Stage
\ | Operation Count Shape | Operation Count Shape

Llama-3.1- 2 Send 2 [128,4096] Send 254 [1,4096]

8B Recv 2 [128,4096] Recv 254 [1,4096]

gp i gg 4 Send 6 [128,4096] Send 762 [1,4096]

d= Recv 6 [128,4096] Recv 762 [1,4096]

TABLE V: Message size and frequency breakdown for pipeline parallelism
Model | TPxPP | Prefill Stage | Decode Stage

| | Operation Count Shape | Operation Count Shape
Allreduce 33 [128,4096] Allreduce 4191 [1,4096]
Iélarﬁa'féé'gB e Gather I [64128] Gather 127 [64128]
Sp B 128 Allgather 2 [128,4096] Allgather 254 [1,4096]
d = Send/Recv 2 [128,2048] Send/Recv 254 [1,2048]

TABLE VI: Message size and frequency breakdown for hybrid parallelism (TPxPP) using Llama-3.1-8B

e Pipeline Parallelism e Key Takeaway
e P2P frequency depends on # pipeline links e Moderate Message Size with high Frequency

e P2P message size remains small and depends on e Decode Stage is more communication heavy

hidden dimension e All-reduce and P2P are the major operations

Hot Interconnects ’25



Performance Analysis: Communication Volume

PP=4 = Hybrid TP=PP=2 m TP=4

400 600

Q Q
£ £
= =
(< 300 =)
> > 400
s s
;§ 200 ,§
2 2 200
S 100 S
£ £
g o g o
o 128 256 512 o
Decoding Sequence Length
(a) Llama-3.2-3B
M Llama-3.238 M Llama-3.1-8B Llama-2-13B

400
i)
=3
® 300
£
32
=)
>
c 200
0
©
L
S 100
£
£
[=]
o 0

PP=4 Hybrid TP=PP=2 TP=4

Parallelism Strategy

PP=4 © Hybrid TP=PP=2 = TP=4 PP=4 °© Hybrid TP=PP=2 = TP=4

o 1000
£
=
g 750
c
£ 500
©
2

I g - I I
£
£
o 0

128 256 512 o 128 256 512
Decoding Sequence Length Decoding Sequence Length
(b) Llama-3.1-8B (c) Llama-2-13B

e Key Takeaway

e Tensor Parallelism has the most communication overhead that scales
with model size and sequence length

e Pipeline Parallelism has minimal pressure on network, good for
bandwidth-constrained and long-sequence scenarios. However, it is
under-utilizing GPU compute.

e Hybrid Parallelism strikes a balance between communication overhead
and GPU utilization

Hot Interconnects ’25



Performance Analysis: SLO Evaluation

2000 150 12.00
10.00

1500
100 8.00
1000 6.00

TPOT (ms)

50 4.00

TTFT (ms)

500
2.00

E2E Latency (ms)

0 0.00
TP=2 TP=4 TP=8 TP=2 TP=4 TP=8

0
TP=2 TP=4 TP=8

Tensor Parallelism Degree Tensor Parallelism Degree Tensor Parallelism Degree

(a) End-to-end Latency (b) Time-to-first-token (c) Time-per-output-token

e Tensor Parallelism (TP)
TTFT: improves as we increase TP degree, since prefill stage is mostly compute-bound

e TPOT: more memory-bound, TP-8 has crossed inter-node boundary

Hot Interconnects ’25

Network Based Computing Laborator



Performance Analysis: SLO Evaluation

g 3000 20.00
)
g i 15.00
o — 2000 -
8 s 2 2
2 o £ = 10.00
Q
3 2 E 1000 g
5 . 5.00
1] 136
N 0.69
= 0 0 0.00

PP=2 PP=4 PP=8 PP=2 PP=4 PP=8 PP=2 PP=4 PP=8
Pipeline Parallelism Degree Pipeline Parallelism Degree Pipeline Parallelism Degree
(a) End-to-end Latency (b) Time-to-first-token (c) Time-per-output-token

e Pipeline Parallelism (PP)

e TTFT: Data dependency + latency scales with # links, PP-8 crosses node boundary

e TPOT: memory-bound, dominated by critical links

Hot Interconnects ’25



Performance Analysis: SLO Evaluation

20 3000 125

g
g 15 100
2 - 2000 -
- £ g 7
- 10 = =
e T o 50
S ~ 1000 o
® 5 = -
- 25
w R
(]
w 0 0 i 0

TP=2PP=4 TP=4 PP=2 TP=8 PP=1 TP=1PP=8 TP=2 PP=4 TP=4 PP=2 TP=8 PP=1 TP=1PP=8 TP=2PP=4 TP=4 PP=2 TP=8 PP=1 TP=1PP=8

Parallelism Strategy Parallelism Strategy Parallelism Strategy
(a) End-to-end Latency (b) Time-to-first-token (c) Time-per-output-token

e Hybrid Parallelism (TP + PP)
e Pure Tensor Parallelism has the best Latency, TTFT and TPOT (Keeping GPUs busy)
e Fits low-latency and short generation applications
e Pure Pipeline Parallelism has acceptable E2E Latency & TPOT
e TP=4, PP=2 remains mostly unbalanced, small TP collectives + internode link

e PP =8 wins with only one inter-node link and much less communication

Hot Interconnects ’25



Conclusions

e Inference workloads impose communications with moderate message size and high frequency.
e Decode stage dominates communication frequency.
e All-reduce and P2P are the two major primitives in Tensor, Pipeline and Hybrid Parallelism.

e Tensor Parallelism offers better GPU utilization and computation efficiency but substantial
communication overhead .

e Fits latency sensitive and short generation tasks.

e Pipeline Parallelism offers minimal communication overhead but low GPU utilization and data
dependency, which is detrimental to latency.

e Fits low-bandwidth environments, and long generation tasks.

e While computational parallelization can overcome communication overhead for short
sequences, it diminishes with longer sequences and inter-node deployments.

Hot Interconnects ’25



The High-Performance MPI/PGAS Project

Thank Youl!

{xu.3304, kandadisuresh.1, anthony.301, alnaasan.1}@osu.edu, panda@cse.ohio-state.edu

ased Co
2
D

£ Full paper is on Arxiv!
https://arxiv.org/abs/250
/.14392

%
é°&
]

VA

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH X Follow ser %:H/DL

MPI, PGAS and Hybrid MPI+PGAS Library

{1

High-Performance
Deep Learning

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

https://x.com/mvapich

http://mvapich.cse.ohio-state.edu/

Hot Interconnects ’25


http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

