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• Introduction
– The Past, Present, and Future of AI

– Machine Learning and Deep Neural Networks

– Diverse Applications of Deep Learning 

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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What is Machine Learning and Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 

https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)

– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML

– Uses Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset! 

• Based on learning data representation 

• DNN Examples: Convolutional Neural Networks, Recurrent 

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using 

DNNs

1. Identify DL as solution to a problem

2. Determine Data Set

3. Select Deep Learning Algorithm to Use

4. Use a large data set to train an algorithm
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History: Milestones in the Development of ML/DL

1940 1950 1960 1970 1980 1990 2000 2010                 2020

Electronic
Brain

1943

Perceptron

1957

ADALINE

1960

XOR 
Problem

Golden 
Age

1969

Multi-layered 
Perceptron

(Backpropagation)

1986

Dark Age 
(“AI Winter”)

DBN

2006

AlexNet

2012

ResNet

2015

WGAN

2017

Transformers

K-Means

1965

Bayesian 
Network

1985

Decision Trees

1979

SVM

1995

KNN

1967

1800 1900 ….

Linear 
Regression

1805

Turing Machine

1936

Evolutionary 
Algorithms

1954

Random Forest

2000

PCA

1901

XGBoost

2014

CatBoost

Deep 
Forest

2017

S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio
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DL and High-Performance Architectures

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/  

• NVIDIA GPUs are the main driving force for faster training of DL models

– The ImageNet Challenge - (ILSVRC) -- 90% of the teams used GPUs (2014)*

– Kaggle is a community for ML and data science and known for hosting competitions: 

• Provides free GPU access to participants due to wide acceptance by the community

• However, High Performance Architectures for DL and HPC are evolving

– 215/500 Top HPC systems are using accelerator/co-processor (Jun ’25)

– DGX-1 (Pascal), DGX-2 (Volta), DGX A100, DGX H100, HGX A100, HGX H100

• Dedicated DL supercomputers

• NVIDIA Eos – An Exaflop AI Supercomputer using DGX H100 (Announced)

– AMD Instinct MI300A GPUs power El Capitan – the #1 Top500 hosted at the 
Lawrence Livermore National Laboratory

– AMD EPYC (Rome/Milan) CPUs have 64 cores/socket (Frontier – #2 on Top500)

– Sapphire Rapids Xeon CPUs have 52 cores/socket (Aurora – #3 on Top500)

– Domain Specific Accelerators for DNNs are also emerging

Accelerator/CP 
Performance Share 

www.top500.org 

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
https://blogs.nvidia.com/blog/2014/09/07/imagenet/
http://www.top500.org/
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Artificial Intelligence Use Cases and Growth Trends

Courtesy: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/ 
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

So what is a Deep Neural Network?

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
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Graphical/Mathematical Intuitions for DNNs

Drawing of a Biological Neuron The Mathematical Model 

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/
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Key Phases of Deep Learning

Courtesy: https://devblogs.nvidia.com/ 

• Training is compute intensive

– Many passes over data

– Can take days to weeks

– Model adjustment is done

• Inference

– Single pass over the data

– Should take seconds

– No model adjustment

• Challenge: How to make “Training” faster?

– Need Parallel and Distributed Training…

https://devblogs.nvidia.com/
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• To actually train a network, please visit: http://playground.tensorflow.org 

TensorFlow playground (Quick Demo)

http://playground.tensorflow.org/
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• To try your own image, please visit: https://microsoft.github.io/onnxjs-demo/#/resnet50

Inference on trained ResNet50 (Quick Demo)

https://microsoft.github.io/onnxjs-demo/#/resnet50
https://microsoft.github.io/onnxjs-demo/#/resnet50
https://microsoft.github.io/onnxjs-demo/#/resnet50
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Credit Card Fraud Detection using Unsupervised Techniques

Courtesy: https://spd.group/machine-learning/fraud-detection-with-machine-learning 
https://www.sas.com/en_us/insights/articles/risk-fraud/fraud-detection-machine-learning.html

… almost $112 million due to credit card fraud in 2019.
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The Impact of Deep Learning on Application Areas

Courtesy: https://github.com/alexjc/neural-doodle 

Courtesy: https://arxiv.org/pdf/1808.02334.pdf Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html

Courtesy: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8065136 
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Google Translate

Courtesy: https://www.theverge.com/2015/1/14/7544919/google-translate-update-real-time-signs-conversations 
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Self Driving Cars

Courtesy: http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/ 
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Food/Coffee Distribution in OSU Campus

Will have significant impact in distribution of groceries, food, packages, mails, etc. 
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• Applications 

– Prostate Cancer Detection

– Metastasis Detection in Breast Cancer

– Genetic Mutation Prediction

– Tumor Detection for Molecular Analysis

AI-Driven Digital Pathology

Courtesy: https://www.frontiersin.org/articles/10.3389/fmed.2019.00185/full



Hoti’25 19Network Based Computing Laboratory

What is Generative AI?

Courtesy: https://www.tutorialspoint.com/gen-ai/ml-and-generative-ai.htm

• Generative AI is a subset of Deep 

Learning which creates new content like 

text, images, videos, or audio based on 

the data it was trained on.

• Examples:

– Text: GPT, LLaMA, and DeepSeek.

– Images: DALL-E and Stable Diffusion.

– Videos: Runway and Sora.

– Audio: AudioPaLM and VALL-E.

• What is not Generative AI?

– Discriminative models that perform:

• Classification

• Regression

• Object detection

• Clustering

• etc.
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Generative AI – Inference 

Online LLM Inferencing

In inference, the model generates outputs based on input prompts. For autoregressive models (most LLMs), 

inference follows an iterative loop, where each generated token (word) is fed back as input for the next step 

until completion.

LLM inference requires low-latency, high-throughput 

compute with the following key QoS (Quality of Service) 

requirements:

– Low Latency – Ensures fast response times, crucial for interactive 

applications.

– Efficient Batch Processing – Optimized for serving multiple 

queries in parallel to maximize throughput.

– Mixed-Precision Support (FP16/BF16/INT8) – Reduces compute 

overhead while maintaining accuracy.

– High-Speed Interconnects (NVLink, InfiniBand) – Required for 

multi-GPU inference to minimize communication bottlenecks.

– High Memory Bandwidth – To efficiently load large model 

weights and handle activation memory.
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• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL
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– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges
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Beginnings of DL Frameworks – Identifying Cats!
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• Done at the secretive X lab at Google

• Neural network of 16,000 computer processors with 1 billion connections

• This network browsed YouTube and began to look for cats

• Dataset: 

– 10 million randomly selected YouTube video thumbnails 

– 20, 000 different items

• This brain achieved 81.7% accuracy in detecting human faces, 76.7% accuracy in 

identifying human parts, and 74.8% accuracy for cats

• Utilized model parallelism

• This work is described in detail in “Building High-Level Features Using Large Scale 

Unsupervised Learning”

Beginnings of DL Frameworks – Identifying Cats!

[1] https://arxiv.org/pdf/1112.6209.pdf  

https://arxiv.org/pdf/1112.6209.pdf


Hoti’25 24Network Based Computing Laboratory

• An influential paper “Deep Learning with COTS HPC systems” was published in 

ICML ’13 (http://proceedings.mlr.press/v28/coates13.pdf) 

• The paper solves a similar problem as “identifying cats” but relies on GPUs and 

MVAPICH for communication: 

– 6.5 times larger model than state-of-the-art  in few days with 2% of the original machines

– Neural networks of DistBelief scale can be trained with 3 machines

• Hardware: 

– A cluster of GPU servers with InfiniBand interconnect

• Software:

– Custom CUDA kernels for matrix-vector and matrix-matrix operations

– MVAPICH2-GDR was used as the MPI library for communicating data between GPUs 

• Most importantly, this project formed the basis of the cuDNN project at NVIDIA

Beginnings of DL Frameworks – DL with COTS HPC

http://proceedings.mlr.press/v28/coates13.pdf
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• cuDNN is a GPU-accelerated library of primitives for DNNs

• cuDNN provides optimized and efficient routines for: 

– Forward and backward convolution

– Pooling

– Normalization 

– Activation Layers

• cuDNN Accelerated DL Frameworks

The NVIDIA cuDNN Library
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• Main objectives of DL frameworks:

– Hide complex mathematics 

– Allow users to focus on DL models

• Support for Parallelism: 

– We have saturated the peak potential of current-

generation architectures

• A single GPU or a many-core CPU is not enough!

• Two strategies to deal with current limitations 

– Parallel (multiple units in a single node) and/or 

Distributed (multiple nodes) training of DNNs

– Dedicated hardware architectures for DNNs are being 

developed (TPUs, Graphcore , etc.)

DL Frameworks, Hardware Architectures, and Distributed Training

Statement and its dataflow fragment. The 
data and computing vertexes with different 

colors reside on different processes. 

Courtesy: https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf 

https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf
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• Many Deep Learning frameworks

– Google TensorFlow

– Facebook Torch/PyTorch

– Berkeley Caffe

– Microsoft CNTK

– Chainer/ChainerMN

– Intel Neon/Nervana Graph

• Open Neural Net eXchange (ONNX) Format

Deep Learning Frameworks 
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• PyTorch is a Python adaptation of Torch (written in Lua)

– Released in 2016 and has gained a lot of traction

• Several contributors and mainly backed by Meta

• Key selling point is ease of expression and “define-by-run” approach

• Build upon previous frameworks like Chainer, Lua Torch, and HIPS

• Originally a Python library but has been moved to C++/C

• Port of Torch framework into Python

• Support for GPU acceleration

• Integration with Numpy

• Automatically generated computational graphs

• Automatic differentiation

PyTorch – Background and History
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• Caffe – https://caffe.berkeleyvision.org

• Keras - https://keras.io

• Theano - http://deeplearning.net/software/theano/

• Blocks - https://blocks.readthedocs.io/en/latest/

• Intel BigDL - https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-

on-apache-spark

• The list keeps growing and the names keep getting longer

– Livermore Big Artificial Neural Network Toolkit (LBANN) - 

https://github.com/LLNL/lbann

– Deep Scalable Sparse Tensor Network Engine (DSSTNE) -

https://github.com/amzn/amazon-dsstne

Many Other DL Frameworks…

https://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/theano/
https://blocks.readthedocs.io/en/latest/
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
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https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://github.com/LLNL/lbann
https://github.com/amzn/amazon-dsstne
https://github.com/amzn/amazon-dsstne
https://github.com/amzn/amazon-dsstne
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• AI Index report offers very 

detailed trends about AI and ML

– Interesting stats. about DL 

frameworks

• TheGradient* reported in 

2019  on PyTorch winning over 

TensorFlow in CVPR, ICML, ICLR 

and other conferences

Statistics about ML/DL Frameworks

Courtesy: https://clockwise.software/blog/artificial-intelligence-framework/ 

* https://thegradient.pub/state-of-ml-frameworks-2019-

pytorch-dominates-research-tensorflow-dominates-industry/  

https://clockwise.software/blog/artificial-intelligence-framework/
https://clockwise.software/blog/artificial-intelligence-framework/
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• HuggingFace is a model repository for trained and tuned SOTA models 

PyTorch vs. TensorFlow: Model Availability

Courtesy: https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/ 

92% of models are PyTorch 

Exclusive

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
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PyTorch vs. TensorFlow: Research Papers & Papers with Code

PyTorch adoption grew from 7% 

(in 2017) to 80% (2021)

Courtesy: https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/ 

70% -> PyTorch repositories,  4% -> 

TensorFlow repositories (latest quarter)

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
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• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
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• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
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• Back-propagation involves 

complicated mathematics. 

– Luckily, most DL Frameworks give 

you a one line implementation -- 

model.backward()

Essential Concepts: Back-propagation

• What are Activation functions? 

– RELU (a Max fn.) is the most common activation fn.

– Sigmoid, tanh, etc. are also used  

Courtesy: https://www.jeremyjordan.me/neural-networks-training/ 

https://www.jeremyjordan.me/neural-networks-training/
https://www.jeremyjordan.me/neural-networks-training/
https://www.jeremyjordan.me/neural-networks-training/
https://www.jeremyjordan.me/neural-networks-training/
https://www.jeremyjordan.me/neural-networks-training/


Hoti’25 36Network Based Computing Laboratory

• Sigmoid

• Tanh

• ReLU

• Leaky ReLU

Essential Concepts: Activation Functions

Courtesy: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.033308 

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.033308
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Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/ 

https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
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• Batched Gradient Descent

– Batch Size = N

• Stochastic Gradient Descent

– Batch Size = 1

• Mini-batch Gradient Descent

– Somewhere in the middle 

– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 

size will yield the fastest 

learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/ 

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/gradient-descent/
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• Overfitting – model > data → so model is not learning but memorizing your data

• Underfitting – data > model → so model is not learning because it cannot capture the 

complexity of your data

Overfitting and Underfitting

Courtesy: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html 

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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Courtesy: https://www.ibm.com/topics/computer-vision
https://www.implantology.or.kr/articles/article/RvNO/ 

What is Computer Vision (CV)?

Computer vision is a field of artificial intelligence (AI) that enables computers and systems 

to derive meaningful information from digital images, videos and other visual inputs — and 

take actions or make recommendations based on that information.

https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.implantology.or.kr/articles/article/RvNO/
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Courtesy: https://www.v7labs.com/blog/convolutional-neural-networks-guide 
A Survey on Vision Transformer (Kai Han et. Al 2022) https://arxiv.org/abs/2012.12556 

Evolution of Computer Vision Models

CNN Architectures

Vision Transformer Architectures

https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://arxiv.org/abs/2012.12556
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Courtesy: https://www.ontotext.com/blog/top-5-semantic-technology-trends-2017/ 

What is Natural Language Processing (NLP)?

Natural Language Processing (NLP) is a subfield of artificial intelligence (AI) that focuses on 

the interaction between computers and human language. It aims to enable computers to 

understand, interpret, and generate human language in a valuable way. 

https://www.ontotext.com/blog/top-5-semantic-technology-trends-2017/
https://www.ontotext.com/blog/top-5-semantic-technology-trends-2017/
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Courtesy: https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/  

Evolution of Language Models
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• Ensemble methods have long been powerful machine 

learning and deep learning methods to break down 

problems into easier subproblems
– E.g. for vision classification, train separate “expert” models on subdomains (animal 

classifier, car classifier, etc), then route the incoming image to the appropriate 

model depending on its subclass (animal, car, etc)

– E.g. for multilingual language modeling, train separate “expert” models for each 

language, then route incoming words to the appropriate model depending on its 

language

• Mixture-of-experts (MoE) models are ensembles of component 

“experts” coupled with a “gating” function that routes tokens to their 

appropriate expert

– Model-type agnostic

Mixture of Experts (MoE)

Credit: https://deepgram.com/learn/mixture-of-experts-ml-model-guide

https://deepgram.com/learn/mixture-of-experts-ml-model-guide
https://deepgram.com/learn/mixture-of-experts-ml-model-guide
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MoE State of the Art: DeepSeek-V3

Credit: https://arxiv.org/html/2412.19437v1 

• DeepSeek-V3 is a powerful Mixture-of-Experts 

(MoE) open-source model with 671B total 

parameters, 37B of which are active per token.

• It leverages Multi-head Latent Attention (MLA) 

and DeepSeekMoE architectures for efficient 

inference and cost-effective training.

• Designed for reasoning, DeepSeek excels in 

logic, pattern recognition, math, and tasks 

where typical generative AI models fall short.

• The training of DeepSeek-V3 is cost-effective 

due to the support of FP8 training and 

communication optimizations.
Benchmark performance of DeepSeek-V3 and its counterparts

https://arxiv.org/html/2412.19437v1
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Outline
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• Why do we need Parallel Training?

• Larger and Deeper models are being proposed

– Language Models: RNNs -> Transformers -> BERT – GPT-(1,2,3,4)

– Vision Models: AlexNet -> ResNet -> NASNet – AmoebaNet → Vision Transformers

– DNNs require a lot of memory and a lot of computation

– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models

• Community has moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Some parallelization strategies..

– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 
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Drawback: If the dataset has 1 million images, then it will take forever to train the model on such 
a big dataset

Solution: Can we use multiple machines to speedup the training of Deep learning models? (i.e. 
Utilize Supercomputers to Parallelize)

Need for Data Parallelism

Mini-Batch Gradient Descent 
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Need for Communication in Data Parallelism
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N
Y
Y
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Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Problem: Train a single model on whole dataset, 
not 5 models on different sets of dataset
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Gradients

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

1 7 2
2 2 4
5 1 3

1 3 2
1 2 3
5 1 2

2 1 3
5 5 2
5 1 1

5 7 1
2 1 2
4 1 3

3 1 1
2 2 1
2 1 2

Data Parallelism

MPI

AllReduce

Reduced
Gradients

12 19 9
12 12 12
21 5 11

12 19 9
12 12 12
21 5 11

12 19 9
12 12 12
21 5 11

12 19 9
12 12 12
21 5 11

12 19 9
12 12 12
21 5 11
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• Element-wise Sum data from all processes and sends to all processes

Allreduce Collective Communication Pattern

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype, 

MPI_Op operation, MPI_Comm comm)

Input-only Parameters

Parameter Description

sendbuf Starting address of send buffer

recvbuf Starting address of recv buffer

type Data type of buffer elements

count Number of elements in the buffers

operation Reduction operation to be performed (e.g. sum)

comm Communicator handle

Input/Output Parameters

Parameter Description

recvbuf Starting address of receive buffer

T1 T2 T3 T4

Sendbuf (Before)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

T1 T2 T3 T4

Recvbuf (After)

4

8

12

16

4

8

12

16

4

8

12

16

4

8

12

16
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Data Parallelism (Cont.)

• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass

– Perform forward pass and 

calculate the prediction

– Calculate Error by comparing 

prediction with actual output 

– Perform backward pass and 

calculate gradients 

• Step3: Gradient Aggregation

– Call MPI_Allreduce to reduce the 

local gradients 

– Update parameters locally using 

global gradients

Batch
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Impact of Large Batch Size

Courtesy: https://research.fb.com/publications/imagenet1kin1h/
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GoogLeNet (ImageNet) on 128 GPUs

Caffe OSU-Caffe (1024) OSU-Caffe (2048)

Large Batch Size is bad for Accuracy But good for speed and scalability

A. A. Awan et al., S-Caffe: Co-designing MPI Runtimes and Caffe 
for Scalable Deep Learning on Modern GPU Clusters. PPoPP '17

https://research.fb.com/publications/imagenet1kin1h/
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• How to define the “size” of a model? (model is also called a DNN or a network)

• Size can mean several things and context is important

– Model Size: # of parameters (weights on edges)

– Model Size: # of layers (model depth)

Essential Concepts: Model Size

Model Depth (No. of Layers)

Weights on Edges
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• Large models → better accuracy

• More data → better accuracy

• Single-node Training; good for

– Small model and small dataset

• Distributed Training; good for:

– Large models and large datasets

Impact of Model Size and Dataset Size

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 

model > data 

data > model 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks


Hoti’25 57Network Based Computing Laboratory

• Epochs per second (EPS)? 

– A variant of images/second

– Basically, what is the speed of 

training the model

• Accuracy per Epoch (APE)?

– E.g. 60% in one full pass over the 

dataset

• Async → Higher EPS but lower APE

• Sync → Higher APE but lower EPS

Synchronous vs. Asynchronous Training

Courtesy: http://engineering.skymind.io/distributed-deep-learning-
part-1-an-introduction-to-distributed-training-of-neural-networks 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks


Hoti’25 58Network Based Computing Laboratory

• You will run the experiments on the OSU RI2 cluster

• Please use the account name and password from http://go.osu.edu/dltutorial

• E.g. ssh ri2tut01@ri2.cse.ohio-state.edu and tutorial01 as password

• Once on the shell, go to /opt/tutorials/dl-tutorial (copy/paste the following line)

 cd /opt/tutorials/hoti-hidl-tutorial

• There is a folder for each lab (labs 1-2)

• Take a look at the README.md file for all scripts

– copy/paste the run commands from README.md and not the slide deck

Getting Set-up for the Hands-on Exercises

http://go.osu.edu/dltutorial
mailto:ri2tut01@ri2.cse.ohio-state.edu
mailto:ri2tut01@ri2.cse.ohio-state.edu
mailto:ri2tut01@ri2.cse.ohio-state.edu
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• Objectives

– How to train PyTorch and TensorFlow models on a single NVIDIA GPU?

– How to perform distributed training of PyTorch and TensorFlow models on multiple GPUs 

using InfiniBand and NVIDIA GPUs?

• Tasks

– Task 1: PyTorch Single GPU

– Task 2: PyTorch Multi-GPU

– Task 3: TensorFlow Single GPU

– Task 4: TensorFlow Multi-GPU

Lab 1 - DNN Training using PyTorch
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• Examples to run data-parallel training with PyTorch using Horovod

• Available from: https://github.com/horovod/horovod/tree/master/examples

• To run ResNet50 with synthetic data with a single GPU, run

python pytorch_synthetic_benchmark.py \

--batch_size=32 \

----num-iters=10 \

Distributed Training with PyTorch using Horovod 

https://github.com/horovod/horovod/tree/master/examples
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Lab 1 – Task 1: Run PyTorch on a single GPU

$ cd /opt/tutorials/hoti-hidl-tutorial/lab1

$ srun -N 1 --reservation=dltutorial run_pytorch_bench_single.sh

+ python /opt/tutorials/hidl-env/horovod/examples/pytorch/pytorch_synthetic_benchmark.py --
batch-size=64 --model=resnet50 --num-iters=5
.

.

Model: resnet50

Batch size: 64

Number of GPUs: 1

Running warmup...

Running benchmark...

Iter #0: 336.0 img/sec per GPU

Iter #1: 336.0 img/sec per GPU

Iter #2: 336.0 img/sec per GPU

Iter #3: 336.0 img/sec per GPU

Iter #4: 335.8 img/sec per GPU

Img/sec per GPU: 336.0 +-0.2

------------------------------------------------

Total img/sec on 1 GPU(s): 336.0 +-0.2

------------------------------------------------

V100
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Lab 1 – Task 2: Run PyTorch on two nodes with 1 GPU/node 
(using MVAPICH-Plus)
$ srun -N 2 --reservation=dltutorial run_pytorch_bench_multi_mvp.sh

+ mpirun_rsh --export-all -np 2 --hostfile hosts_424919 python /opt/tutorials/hidl-
env/horovod/examples/pytorch/pytorch_synthetic_benchmark.py --batch-size=64 --model=resnet50 --
num-iters=5
.

.

Model: resnet50

Batch size: 64

Number of GPUs: 2

Running warmup...

Running benchmark...

Iter #0: 326.8 img/sec per GPU

Iter #1: 325.6 img/sec per GPU

Iter #2: 324.3 img/sec per GPU

Iter #3: 324.5 img/sec per GPU

Iter #4: 324.6 img/sec per GPU

Img/sec per GPU: 325.2 +-1.8

------------------------------------------------

Total img/sec on 2 GPU(s): 650.3 +-3.6

------------------------------------------------

V100

~1.9X on 
2 GPUs
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• Examples to run data-parallel training with TensorFlow using Horovod

• Available from: https://github.com/horovod/horovod/tree/master/examples

• To run ResNet50 with synthetic data with a single GPU, run

python tensorflow2_synthetic_benchmark.py\

--batch_size=32 \

----num-iters=10 \

Distributed Training with TensorFlow using Horovod 

https://github.com/horovod/horovod/tree/master/examples
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Lab 1 – Task 3: Run TensorFlow on a Single GPU

$ cd /opt/tutorials/sca-hidl-tutorial/lab1

$ srun -N 1 --reservation=dltutorial run_tf_bench_single.sh

+ python /opt/tutorials/hidl-env/horovod/examples/tensorflow2/tensorflow2_synthetic_benchmark.py -
-batch-size=64 --model=ResNet50 --num-iters=5
.

.

Model: ResNet50

Batch size: 64

Number of GPUs: 1

Running warmup...

Running benchmark...

Iter #0: 343.9 img/sec per GPU

Iter #1: 342.6 img/sec per GPU

Iter #2: 342.2 img/sec per GPU

Iter #3: 342.5 img/sec per GPU

Iter #4: 342.4 img/sec per GPU

Img/sec per GPU: 342.7 +-1.2

--------------------------------------------

Total img/sec on 1 GPU(s): 342.7 +-1.2

--------------------------------------------

V100
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Lab 1 – Task 4: Run TensorFlow on two nodes with 1 
GPU/node (using MVAPICH3-GDR)
$ srun -N 2 --reservation=dltutorial run_tf_bench_multi_mvp.sh

+ mpirun_rsh --export-all -np 2 --hostfile hosts_424948 python /opt/tutorials/hidl-
env/horovod/examples/tensorflow2/tensorflow2_synthetic_benchmark.py --batch-size=64 --model=ResNet50 --num-iters=5
.

.

Model: ResNet50

Batch size: 64

Number of GPUs: 2

Running warmup...

Running benchmark...

Iter #0: 314.3 img/sec per GPU

Iter #1: 314.2 img/sec per GPU

Iter #2: 313.6 img/sec per GPU

Iter #3: 314.3 img/sec per GPU

Iter #4: 314.6 img/sec per GPU

Img/sec per GPU: 314.2 +-0.6

---------------------------------------------------

Total img/sec on 2 GPU(s): 628.4 +-1.3

--------------------------------------------------- 1.83X on 
2 GPUs

V100
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• Deep Learning models can be trained in multiple ways

– Examples to run data-parallel training with Horovod are available at 

“https://github.com/horovod/horovod/tree/master/examples”

– Single/Multiple GPU jobs -- similar

– Horovod can be configured MPI, GLOO, NCCL, and oneCCL.

– MVAPICH-Plus with CUDA-aware design delivers near-linear speedup 

for multi-node training

– User guide to install the full HiDL stack:

https://hidl.cse.ohio-state.edu/userguide/horovod/ 

Hands-on Exercises: Key Takeaways from DL labs 

https://hidl.cse.ohio-state.edu/userguide/horovod/
https://hidl.cse.ohio-state.edu/userguide/horovod/
https://hidl.cse.ohio-state.edu/userguide/horovod/
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• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs)

• Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Accelerators
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects - 
InfiniBand

<1usec latency, 200Gbps Bandwidth>

Multi-/Many-core 
Processors

SSD, NVMe-SSD, NVRAM

Sunway TaihuLightSummit SierraFugaku
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• Hardware Architectures

– Interconnects

• InfiniBand, RoCE, Omni-Path, Slingshot, etc.

– Processors 

• GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.

• Communication Middleware

– Message Passing Interface (MPI)

• CUDA-Aware MPI

– NVIDIA NCCL

High-Performance Architectures for Distributed DL
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• High-Performance Computing (HPC) has adopted advanced interconnects and protocols 

– InfiniBand (IB)

– Omni-Path

– High Speed Ethernet 10/25/40/50/100/200 Gigabit Ethernet/iWARP

– RDMA over Converged Enhanced Ethernet (RoCE)

• Very Good Performance

– Low latency (few micro seconds)

– High Bandwidth (400 Gb/s with NDR InfiniBand)

– Low CPU overhead (5-10%)

• OpenFabrics software stack with IB, Omni-Path, iWARP and RoCE interfaces are driving HPC systems

• Many such systems in Top500 list

Overview of High Performance Interconnects
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InfiniBand Link Speed Standardization Roadmap

Courtesy: InfiniBand Trade Association

XDR = eXtreme Data Rate
NDR = Next Data Rate
HDR = High Data Rate
EDR = Enhanced Data Rate
FDR = Fourteen Data Rate
QDR = Quad Data Rate
DDR = Double Data Rate (not shown)

SDR = Single Data Rate (not shown)

mailto:panda@cse.ohio-state.edu
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Courtesy: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

                : https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/

Hardware for DNN Training and Inference: TPUs

• CISC style instruction set

• Uses systolic arrays as the heart of multiply unit

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
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• Specifically designed for AI workloads – an 

Intelligence Processing Unit (IPU)

– Massively parallel

– Low-precision floating-point compute 

– Higher compute density

• Early benchmarks show 10-100x speedup 

over GPUs

– Presented at NIPS 2017

• HPC Wire: Microsoft Azure IPU instances 
https://www.hpcwire.com/2019/11/15/microsoft-azure-adds-

graphcores-ipu/

Hardware for DNN Training and Inference: IPUs

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications 
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• Habana Labs – Training Accelerator called Gaudi – (HotChips ‘19)

• Gaudi – AI processor with RoCE integrated

• Gaudi software – Enables high-level frameworks

• Intel has acquired Habana for $2 billion! 

Hardware for DNN Training: Habana Gaudi

Courtesy: https://habana.ai/wp-content/uploads/2019/06/Habana-Offers-Gaudi-for-AI-Training.pdf 
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• Cerebras: First-Gen Wafer-Scale Engine (WSE) contains 400,000 Sparse Linear 

Algebra Compute (SLAC) Cores 

• Swarm Communication fabric in a 2D mesh with 100 Pb/s of bandwidth

• Teased World’s Largest Chip with 2.6 Trillion 7nm Transistors and 850000 

Cores (HotChips ‘20)

Hardware for DNN Training: Cerebras

Courtesy: https://www.cerebras.net/product/#chip, https://www.tomshardware.com/news/worlds-biggest-chip-cerebras-7nm-26-trillion-
transistors-850000-cores-wafer-scale-engine  

https://www.cerebras.net/product/#chip
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• Hardware Architectures

– Interconnects

• InfiniBand, RoCE, Omni-Path, etc.

– Processors

• GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs,  etc.

• Communication Middleware

– Message Passing Interface (MPI)

• CUDA-Aware MPI

– NVIDIA NCCL

High-Performance Architectures for Distributed DL
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Parallel Programming Models Overview

Shared Memory Memory Memory Memory Memory Memory Memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving importance

P1 P2 P3 P1 P2 P3

Logical shared memory

P1 P2 P3



Hoti’25 78Network Based Computing Laboratory

• Element-wise Sum data from all processes and sends to all processes

Allreduce Collective Communication Pattern

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype, 

MPI_Op operation, MPI_Comm comm)

Input-only Parameters

Parameter Description

sendbuf Starting address of send buffer

recvbuf Starting address of recv buffer

type Data type of buffer elements

count Number of elements in the buffers

operation Reduction operation to be performed (e.g. sum)

comm Communicator handle

Input/Output Parameters

Parameter Description

recvbuf Starting address of receive buffer

T1 T2 T3 T4

Sendbuf (Before)
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4

1
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Recvbuf (After)
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Overview of the MVAPICH Project
• High Performance open-source MPI Library 

• Support for multiple interconnects

– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS EFA, 

OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms

– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-4.1 standard

• http://mvapich.cse.ohio-state.edu 

• Additional optimized versions for different systems/environments:

– MVAPICH-Plus (Unification of MVAPICH2-X and MVAPICH2-GDR), since 2023

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,450 organizations in 92 countries 

(listed under the Users Tab of the MVAPICH page)

• More than 1.93 Million downloads from the OSU site 

directly

• Empowering many TOP500 clusters (Nov ‘24 ranking)

– 15th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 52nd , 448, 448 cores (Frontera) at TACC

– 72nd, 288,288 cores (Lassen) at LLNL

– 91st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux 

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 52nd ranked TACC Frontera system

• Empowering Top500 systems for more than 20+ years

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
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At Sender:

  

At Receiver:

    MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR 
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• NVIDIA Collective Communication Library (NCCL)

• Main Motivation: Deep Learning workloads

• NCCL1– efficient dense-GPU communication within the node

• NCCL2– multiple DGX systems connected to each other with InfiniBand systems

NCCL Communication Library

Courtesy: https://developer.nvidia.com/nccl 

https://developer.nvidia.com/nccl
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• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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How to efficiently scale-out 

Machine Learning (ML)/Deep Learning (DL)/Data 

Science frameworks and take advantage of 

heterogeneous 

High Performance Computing (HPC) resources?

Broad Challenge: Exploiting HPC for Machine 
Learning/Deep Learning/Data Science Frameworks
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1. What are the fundamental 

issues in designing DL 

frameworks?

– Memory Requirements

– Computation Requirements

– Communication Overhead

2. Why do we need to support 

distributed training?

– To overcome the limits of 

single-node training

– To better utilize hundreds of 

existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 

brought forward by DL frameworks for 

Communication runtimes?

– Large Message Collective 

Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in achieving 

Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 

level and Exploit it at the DL 

Framework level

– What performance benefits can be 

observed? 

– What needs to be fixed at the 

communication runtime layer?

5. 

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-Point
Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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• Data Parallelism

– Distributed Training for 

TensorFlow and PyTorch

– AccDP

• Model and Hybrid Parallelism

– ZeRO

– 3D Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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MVAPICH (MPI)-driven Infrastructure for ML/DL Training: 
MPI4DL

MVAPICH for CPU Training
MVAPICH-Plus for 

GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH for CPU Training
MVAPICH-Plus for 

GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: https://github.com/OSU-

Nowlab/pytorch/tree/hidl-2.0 and http://hidl.cse.ohio-state.edu 

https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
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HiDL 2.0 Release

• Support for PyTorch 2.7.1 and later versions

• Full support for PyTorch Native DDP training

• Support for optimized MPI communication

– Efficient large-message collectives (e.g., Allreduce) 
on various CPUs and GPUs

– GPU-Direct Ring and Two-level multi-leader 
algorithms for Allreduce operations

– Support for fork safety in distributed training 
environments

– Exploits efficient large message collectives in 
MVAPICH-Plus 4.0 and later

• Open-source PyTorch version with advanced MPI 
backend support - Available in our PyTorch tag

• Vendor-neutral stack with competitive performance 
and throughput to GPU-based collective libraries 

• Tested on modern HPC clusters (etc, OLCF Frontier, 
TACC Vista) with up-to-date accelerator generations 
(etc. AMD NVIDIA)

• Compatible with

– InfiniBand Networks: Mellanox InfiniBand adapters (EDR, 
FDR, HDR, NDR)

– Slingshot Networks: HPE Slingshot

– GPU&CPU Support:

• NVIDIA GPU A100, H100, GH200

• AMD MI200 series GPUs

– Software Stack:

• CUDA [12.x] and Latest CuDNN

• ROCm [6.x]

• (NEW)PyTorch [2.7.1]

• (NEW)Python [3.x]

More details available from: https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
and http://hidl.cse.ohio-state.edu 

https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
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Distributed Data Parallel Training on GH200 (Vista) 
• Torch Distributed

• Application: GPT-2 model training 

using nanoGPT.

• Hardware: Vista System @TACC

– GH200 Superchips each with:

• 72 ARM cores with 120 GB LPDDR.

• H100 GPU with 96GB HBM3.

– NVIDIA NDR InfiniBand (400Gb/s)

• Software:

– PyTorch 2.6.0

– NCCL 2.21.5

– MVAPICH-Plus 4.1
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Distributed Data Parallel Training (Frontier) 

• End-to-end GPT-2 Training with Openwebtext using Distributed Data Parallel

• 12.4% less ms per iteration (compared to RCCL 2.21.5 + OFI) for 128 GPUs
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)

• ResNet-50 Training using 

TensorFlow benchmark on 

SUMMIT -- 1536 Volta 

GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        

= 3 x 90 = 270 seconds = 4.5 

minutes!
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MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

*We observed issues for NCCL2 beyond 384 GPUs 

MVAPICH2-GDR reaching ~0.42 million 

images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 

performance for DNN training

• Report a peak of 260,000 images/sec on 

2048 nodes

• On 2048 nodes, ResNet-50 can be trained 

in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 
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AccDP: GPU Utilization for DNN Training

• Modern GPUs are computational workhorses in 
HPC systems and are used in parallel to reduce 
DNN training time.

• However, GPUs are not fully utilized by DNN 
training workloads especially for small-to-medium 
DL models and/or input size.

• The figure shows the resource utilization of NVIDIA 
A100 GPU during the training phase of different 
DNN models with two input sizes. (We choose the 
largest possible batch sizes for best performance)

• We observed a utilization as low as 43% for 
ResNet18 with 32x32 input size to 63% for 
ResNet50 with image size 224x224.

NVIDIA A100 GPU utilization during DNN training of 

different models with different input sizes

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern 
GPU-Based HPC Clusters”, HiPC’22. 
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AccDP: Performance Improvement

• ResNet18 training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU

• ShuffleNet training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU.

Multi node with ResNet18 Multi node with ShuffleNet

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern 
GPU-Based HPC Clusters”, HiPC’22. 
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• Data Parallelism

– Distributed Training for 

TensorFlow and PyTorch

– AccDP

• Model and Hybrid Parallelism

– ZeRO

– 3D Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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DeepSpeed ZeRO

Courtesy: https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
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- p: Num model parameters

- kl:  Low precision B/param

- kh: High precision B/param

- d: GPU Devices

- s: Sequence length

- b: Batch size

- h: Hidden size

- L: Transformer layers

- a: Num attention heads

- z: ZeRO stage

Key question: What is the GPU memory M required to fit a model during training:

Where Mm is model memory, Mo optimizer memory, Mg gradient memory, and Ma activation memory

Memory Anatomy of a DNN (for ZeRO/FSDP)
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• Instead of being limited by the device memory, we are now limited by the aggregate 

memory

• E.g. You want to train a trillion-parameter model on 1024 GPUs with 16 GB memory each

– With 16-bit precision, model+optimizer = ~16 TB of memory

– We can fit this into 1024 GPUs with ZeRO:      
𝟏𝟔 𝑻𝑩

𝟏𝟎𝟐𝟒 𝑮𝑷𝑼𝒔
= 𝟏𝟔

𝑮𝑩

𝑮𝑷𝑼

• ZeRO-Infinity introduces offload to CPU memory or NVMe disk for the truly desperate

• Since ZeRO removes the DP memory limit, do we still need MP?

– There are still models and data samples (e.g. pathology, astronomy, etc) that don’t fit inside GPU memory even 

with ZeRO

– We can use pipeline + tensor parallelism along with ZeRO for these cases (called 3D-parallel, more on this later!)

DeepSpeed ZeRO
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• LLM models consist of matrix multiplications.

• Tensor Parallelism splits along hidden dim, and distributes the computation to 

multiple GPUs.

Tensor Parallelism

Batch

Hidden dim

Hidden dim

Output dim

Batch

Output dim

Batch

Hidden dim

Hidden dim

Output dim

Batch

Output dim

Batch

Hidden dim

Hidden dim Batch

Output dim

GPU 0:

GPU 1:

All Reduce

Input tensor Model weights
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• Combine PP with TP and DP for 3D parallelism. For example:

– Split given layer(s) via TP across 4 GPUs

– Split the model into 4 pipeline stages

– The above TP+PP combination compose a single DP unit

– Use 2 DP units with the above configuration for 32-GPU parallelism

• Question: Given that each node contains 8 GPUs, where should you place the node boundaries?

3D Parallelism

Credit: https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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• Combine PP with TP and DP for 3D parallelism. For example:

– Split given layer(s) via TP across 4 GPUs

– Split the model into 4 pipeline stages

– The above TP+PP combination compose a single DP unit

– Use 2 DP units with the above configuration for 32-GPU parallelism

• Question: Given 4 nodes with 8 GPUs each, where should you place the node boundaries?

3D Parallelism

• Answer: Keep as many TP partitions as possible within a 

node

– Each model replica requires TP*PP = 16 GPUs

– Two pipeline stages per node

– Pipeline-parallel pt2pt comms across nodes, no inter-node TP

• Between pipeline stages 2 and 3 out of the total 4

– ZeRO-1 across nodes as well, but same comms volume as DP and 

easy to overlap with compute

Node 2Node 1

Node 3 Node 4
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• Objectives

– Test an out-of-core DNN on a single node (BERT 2.5B)

– Train the out-of-core DNN on two node using DeepSpeed

• Tasks

– Task 1: Single GPU

– Task 2: Multi-GPU

Lab 2 – Out-of-core DNN Training using DeepSpeed
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Lab 2 – Task 1: Test a 2.5B Bert DNN on a single GPU 

$ cd /opt/tutorials/hoti-hidl-tutorial/lab2

$ srun -N 1 -p bdw-v100 train-bert-single.sh

+ /opt/tutorials/hidl-env/miniconda3/envs/deepspeed/bin/deepspeed -H /tmp/hosts_425272 /opt/tutorials/hidl-
env/deepspeed_benchmarks/train_bert.py --checkpoint_dir /tmp/checks --num_layers 192 --ff_dim 4096 --h_dim 1024 --batch_size 
1 --num_iterations 10

Traceback (most recent call last):

  File "/opt/tutorials/hidl-env/deepspeed_benchmarks/train_bert.py", line 791, in <module>

    fire.Fire(train)

  File "/opt/tutorials/hidl-env/miniconda3/envs/deepspeed/lib/python3.10/site-packages/fire/core.py", line 141, in Fire

    component_trace = _Fire(component, args, parsed_flag_args, context, name)

  File "/opt/tutorials/hidl-env/miniconda3/envs/deepspeed/lib/python3.10/site-packages/fire/core.py", line 466, in _Fire

    component, remaining_args = _CallAndUpdateTrace(

  File "/opt/tutorials/hidl-env/miniconda3/envs/deepspeed/lib/python3.10/site-packages/fire/core.py", line 681, in _CallAndUpdateTrace

    component = fn(*varargs, **kwargs)

  File "/opt/tutorials/hidl-env/deepspeed_benchmarks/train_bert.py", line 759, in train

    optimizer.step()

  File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/optimizer.py", line 391, in wrapper

    out = func(*args, **kwargs)

  File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/optimizer.py", line 76, in _use_grad

    ret = func(self, *args, **kwargs)

  File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/adam.py", line 159, in step

    has_complex = self._init_group(

  File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/adam.py", line 115, in _init_group

    state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB. GPU



Hoti’25 106Network Based Computing Laboratory

Lab 2 – Task 2: Run 2.5B Bert DNN on two GPUs 

$ cd /opt/tutorials/hoti-hidl-tutorial/lab2

$ srun -N 2 --reservation=dltutorial run_bert.sh

+ /opt/tutorials/hidl-env/miniconda3/envs/deepspeed/bin/deepspeed -H /tmp/hosts_425274 /opt/tutorials/hidl-
env/deepspeed_benchmarks/train_bert_ds.py --checkpoint_dir /opt/tutorials/hidl-env/checks --num_layers 192 --ff_dim 4096 --
h_dim 1024 --batch_size 1 --num_iterations 10

gpu01: [2022-12-31 22:50:20,415] [INFO] [timer.py:197:stop] 0/4, RunningAvgSamplesPerSec=1.989045629615473, CurrSamplesPerSec=1.9197348998894654, 

MemAllocated=18.42GB, MaxMemAllocated=25.43GB

gpu01: [2022-12-31 22:50:21,470] [INFO] [stage_1_and_2.py:1765:step] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 268435456.0, 

reducing to 134217728.0

gpu01: [2022-12-31 22:50:21,472] [INFO] [timer.py:197:stop] 0/5, RunningAvgSamplesPerSec=1.9581760061302556, CurrSamplesPerSec=1.8992247658347254, 

MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpu01: [2022-12-31 22:50:22,518] [INFO] [stage_1_and_2.py:1765:step] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 134217728.0, 

reducing to 67108864.0

gpu01: [2022-12-31 22:50:22,520] [INFO] [timer.py:197:stop] 0/6, RunningAvgSamplesPerSec=1.9472242517233995, CurrSamplesPerSec=1.9150918757408228, 

MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpu01: [2022-12-31 22:50:23,557] [INFO] [stage_1_and_2.py:1765:step] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 67108864.0, 

reducing to 33554432.0

gpu01: [2022-12-31 22:50:23,558] [INFO] [timer.py:197:stop] 0/7, RunningAvgSamplesPerSec=1.9440531488041186, CurrSamplesPerSec=1.9314713530693848, 

MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpu01: [2022-12-31 22:50:24,577] [INFO] [stage_1_and_2.py:1765:step] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 33554432.0, 

reducing to 16777216.0

gpu01: [2022-12-31 22:50:24,579] [INFO] [timer.py:197:stop] 0/8, RunningAvgSamplesPerSec=1.9473977612894298, CurrSamplesPerSec=1.9642949469669437, 

MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpu01: [2022-12-31 22:50:25,644] [INFO] [stage_1_and_2.py:1765:step] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 16777216.0, 

reducing to 8388608.0

gpu01: [2022-12-31 22:50:25,645] [INFO] [timer.py:197:stop] 0/9, RunningAvgSamplesPerSec=1.9380716205436017, CurrSamplesPerSec=1.883938232505326, 

MemAllocated=18.42GB, MaxMemAllocated=25.44GB



Hoti’25 107Network Based Computing Laboratory

• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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What is Deep Learning Inference?

Courtesy: https://developer.nvidia.com/blog/nvidia-deep-learning-inference-platform-

performance-study/; https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-

deep-learning-training-and-inference

• Inference: Latency-sensitive

– Final Phase of Deep Learning

– The closest end to users

• Smaller batch size in the workflow

• User-end requests arrive randomly

• No need for model weights update

• Response time is the most crucial

Phase Sensitivity

Training Model-learning Throughput

Inference User-facing Latency

• Deep learning Training & Inference
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Inference Scenarios

1. Online vs. batch inference:

– Online Inference: used when real-time predictions are required

• Latency: Lower latency is critical for real-time applications, and online inference focuses on minimizing the 

time it takes to process individual instances.

– Batch Inference: employed for processing large volumes of data at once

• Throughput: Batch inference focuses on maximizing throughput by processing many instances 

simultaneously, rather than prioritizing latency.

2. Edge vs. HPC/Cloud inference:

– Inference on the Edge: limited resources and require low-latency responses

• Latency: Low-latency responses are crucial in edge scenarios, as real-time predictions may be necessary for 

applications like autonomous vehicles or IoT devices.

– Cloud Inference: more resources and better scalability

• Throughput: HPC/cloud systems can scale horizontally and vertically, allowing for increased throughput 

when processing large volumes of data.
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Quantization for DNN Inference on the Edge
• Quantization uses FP16, INT16, and INT8 datatypes instead of FP32 to represent the weights 

and activations of DNN models.

• Using smaller datatypes to represent a model can lead to reduced memory footprint, smaller 

latency, and improved throughput.

• The quantization approach is especially beneficial for edge devices with limited memory and 

compute resources.

[1]. Ahn, Hyunho, Tian Chen, Nawras Alnaasan, Aamir Shafi, Mustafa Abduljabbar, and Hari Subramoni. "Performance Characterization of using Quantization for DNN 
Inference on Edge Devices: Extended Version."  7th IEEE International Conference on Fog and Edge Computing

Inference performance of OpenVINO and PyTorch using MLPerf Edge on the DenseNet-121 and VGG-19 models
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Flover: Efficient parallel inference on LLMs with temporal fusion[1]

• When serving multiple requests, how to deliver both low-latency and high-throughput?

• For generative models such as GPT, LLaMA, the generation is sequential and regulated by 'for' loop.

– For multiple requests that arrive at different time, how do we schedule the inference?

[1] Yao, Jinghan, Nawras Alnaasan, Tian Chen, Aamir Shafi, and Hari Subramoni. "Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference." In Proceeding of HiPC 23
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Flover: Efficient parallel inference on LLMs with temporal fusion
• When requests evicted, their buffer need to be properly managed.

– When early arrived requests finished

– When request gets an EOS token

Yao, Jinghan, Nawras Alnaasan, Tian Chen, Aamir Shafi, and Hari Subramoni. "Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference." arXiv preprint arXiv:2305.13484 (2023).



Hoti’25 113Network Based Computing Laboratory

• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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• Convergence of ML/DL and HPC

• ML/DL Benchmarks and Thoughts on Standardization

• Handling Trillion Parameter Models for Training and 

Inference

• Energy-aware and Fault-Tolerant DL training

• Low latency and high-throughput inference on a 

range of devices

Open Issues and Challenges  
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• Is Machine Learning/Deep Learning and Data Science an HPC Problem?

– Distributed Model/DNN Training is definitely an HPC problem

– Inference – not yet an HPC problem

– Support for Machine Learning frameworks on HPC systems is improving (yet lagging) 

• Why HPC can help?

– Decades of research for communication models and performance optimizations

– MPI, PGAS, and other communication runtimes can help for “data-parallel” training

• Some of the needs for ML/DL frameworks are an exact match

– Compute intensive problem

• Some needs are new for distributed/parallel communication runtimes

– Large Message Communication

– CUDA-Aware Communication

Convergence of ML/DL and HPC



Hoti’25 116Network Based Computing Laboratory

• Can we have a standardized interface?

– Are we there yet?

– Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)

• What can be a good starting point?

• Will it come from the HPC community or the DL community?

• Can there be a collaboration across communities?

• What about standard benchmarks? Is there a need?

– State-of-the-art

• HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk 

• Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks 

• DAWN Bench – https://dawn.cs.stanford.edu/benchmark/ 

• MLPerf – https://www.mlperf.org  -- Latest and Widely Promoted now!

ML/DL Benchmarks and Thoughts on Standardization

http://dlbench.comp.hkbu.edu.hk/
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://dawn.cs.stanford.edu/benchmark/
https://www.mlperf.org/


Hoti’25 117Network Based Computing Laboratory

• The community has crossed models with Billion Parameters

• Already thinking about Models with Trillion Parameters

– Trillion Parameter Consortium (https://www.anl.gov/cels/trillion-parameter-

consortium) 

• Model Training and Inference with Trillion Parameters will require

– Extremely Large-scale datacenters (~1 million GPUs)

– Accelerators and/or Memory subsystems to hold the model during training 

and inference

– Next-generation of architectures (CPUs, GPUs, Interconnects) and algorithms 

for training and inference

Handling Trillion Parameter Models for Training and 
Inference

https://www.anl.gov/cels/trillion-parameter-consortium
https://www.anl.gov/cels/trillion-parameter-consortium
https://www.anl.gov/cels/trillion-parameter-consortium
https://www.anl.gov/cels/trillion-parameter-consortium
https://www.anl.gov/cels/trillion-parameter-consortium
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• Training Models with Billion Parameters requires

– Extremely-large data centers with hundred thousands of GPUs

– Months of training time

• Consumes significant energy

• GPUs go through failures

• Significant focus on 

– New generation of hardware and software for reducing energy consumption

– Newer Checkpointing and fault-tolerant schemes 

Energy-aware and Fault-Tolerant DL Training
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• Wide range of needs for inference

– Multiple disciplines (engineering, medicine, agriculture, …)

– Range of edge devices (laptops, smart phones, drones, dedicated devices)

• Require inference schemes with 

– Low-latency

– High-throughput 

– Reduced cost

• The inference workflow pipeline involving edge devices, network, and 

back-end servers need to be heavily optimized based on the needs

Low latency and high-throughput inference on a range 
of devices
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• Introduction

• Deep Learning Frameworks

• Deep Neural Network Training

• Distributed Data-Parallel Training 
– Lab 1: Hands-on Exercises (Data Parallelism)

• Latest Trends in High-Performance Computing Architectures

• Challenges in Exploiting HPC Technologies for DL

• Advanced Distributed Training
– Lab 2: Hands-on Exercises (Advanced Parallelism)

• Distributed Inference Solutions

• Open Issues and Challenges

• Conclusion

Outline
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• Exponential growth in Machine Learning/Deep Learning/Data Science 

frameworks

• Provided an overview of issues, challenges, and opportunities for 

designing efficient communication runtimes

– Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks

– Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential

• Worked on a set of hands-on exercises to demonstrate the complex interaction 

between DL/ML middleware with the underling HPC technologies and middleware 

• Need collaborative efforts to achieve the full potential

Conclusion
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Thank You!
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The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 

panda@cse.ohio-state.edu

alnaasan.1@osu.edu 
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