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What is Machine Learning and Deep Learning?

e Machine Learning (ML) ;ﬁ;éiﬁ&'h&
— “the study of computer algorithms to improve EEQCR:'INE
automatically through experience and use of data” DEEP
LEARNING

e Deep Learning (DL) — a subset of ML
— Uses Deep Neural Networks (DNNs)

— Perhaps, the most revolutionary subset!
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1. Identify DL as solution to a problem _& — %E —

D ete rm | ne D d ta S et Input Feature extraction + Classification Cutput

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

2
3. Select Deep Learning Algorithm to Use
4

Use a large data set to train an algorithm deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning,
https://en.wikipedia.org/wiki/Machine learning
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History: Milestones in the Development of ML/DL
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DL and High-Performance Architectures

* NVIDIA GPUs are the main driving force for faster training of DL models
— The ImageNet Challenge - (ILSVRC) -- 90% of the teams used GPUs (2014)*

— Kaggle is a community for ML and data science and known for hosting competitions:
e Provides free GPU access to participants due to wide acceptance by the community

e However, High Performance Architectures for DL and HPC are evolving
— 215/500 Top HPC systems are using accelerator/co-processor (Jun ’25)

@ NVIDIA A100
— DGX-1 (Pascal), DGX-2 (Volta), DGX A100, DGX H100, HGX A100, HGX H100 @ NVIDIA H100 SXM5 80GB
e Dedicated DL supercomputers NVIDIA HT00
@ NVIDIA Tesla V100
e NVIDIA Eos — An Exaflop Al Supercomputer using DGX H100 (Announced) @ NVIDIA A100 SXM4 40 GB
— AMD Instinct MI300A GPUs power El Capitan — the #1 Top500 hosted at the @ Nvidia H100 SXM5 94Gb
Lawrence Livermore National Laboratory @ AMD Instinct MI250X
. . @ NVIDIA GH200 Superchip
— AMD EPYC (Rome/Milan) CPUs have 64 cores/socket (Frontier —#2 on Top500) @ NVIDIA H100 80GB
— Sapphire Rapids Xeon CPUs have 52 cores/socket (Aurora — #3 on Top500) @ AMD Instinct MI300A

— Domain Specific Accelerators for DNNs are also emerging @ Others

Accelerator/CP
Performance Share
www.top500.org

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/
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Artificial Intelligence Use Cases and Growth Trends

1.2 Artificial Intelligence Revenue, Top 10 Use Cases, World Markets: 2025

Contract analysis

1.1 Artificial Intelligence Revenue, World Markets: 2016-2025 _
Object detection and classification -
$40,000 avoidance, navigation _
Object identification, detection,
$35,000 classification, tracking from geospatial _
images
$30,000 Automated geophysical feature detection
2 $25,000
o Text query of images
S  $20,000 _
<2 Content distribution on social media
$15.000 —
$1ﬂ Duu PrEdic‘ti\fE mainlenaho&
$5,000 I I Efficient, scalable processing of patient data
. — wm W H ]
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Static image 'F-CDQt: ition, classification, and
Algorithmic trading strategy performance
mprovemen I

$500 $1,000 $1,500 $2,000 $2,500 $3,000
($ Millions)
Courtesy: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

$
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Three Main Types of Machine Learning
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Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/
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So what is a Deep Neural Network?

e Example of a 3-layer Deep Neural Network (DNN) — (input layer is not counted)

iInput layer
hidden layer 1 hidden layer 2

Courtesy: http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Graphical/Mathematical Intuitions for DNNs

impulses carried
toward cell body

branches
dendrites of axon
nucleus
impulses carried
away from cell body
cell body

axon
terminals

Lo wo
*@® synapse
axon from a neuron
woZo
cell body f (Zwm s b)
i Zw z; +b|f i

1 : S output axon
activation
function

Drawing of a Biological Neuron

Courtesy: http://cs231n.github.io/neural-networks-1/

The Mathematical Model
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Key Phases of Deep Learning

e Training is compute intensive

— Many passes over data Training
r;r vl Forward » udogn
— Can take days to weeks g | ¥ ~ labels
=7 <[, face” |}
— Model adjustment is done \ \ - e
Large N backward error
e |nference
Inference
X
S | ~ }(a )
Single pass over the data =i O Forward oy face?
LA VR =P
— Should take seconds et =
) # variedN bt
— No model adJUStment Courtesy: https://devblogs.nvidia.com/

e Challenge: How to make “Training” faster?

— Need Parallel and Distributed Training...

Network Based Computing Laborator
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TensorFlow playground (Quick Demo)

e To actually train a network, please visit: http://playground.tensorflow.org

Epoct Learning rate Activation Reqularizatior Regularization rate Problem type
>
O ° 000,1 10 0.03 v Tanh v None v 0 v Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties Test loss 0.006
you want to use? do you want to Training loss 0.005
feed in? i S -

4 neurons 2 neurons

/,’
———

Noise

Batch size: 10

Batch size: 10 Vo =

—® frorm one neuron
Hover o see it

REGENERATE



http://playground.tensorflow.org/

Inference on trained ResNet50 (Quick Demo)

e To try your own image, please visit: https://microsoft.github.io/onnxjs-demo/#/resnet50

Select Backend: GPU-WebGL -

Select image~ or UPLOAD IMAGE Inference Time:  38.0 ms

library (I 99%
bookshop 1%
restaurant 0%

tobacco shop 0%

bookcase 0%
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Credit Card Fraud Detection using Unsupervised Techniques

1,800 + r 500
=== Data breaches  —e—Records exposed (millions) 1,632 ’
1,600 + ¢ 450 =
5
o ©
£
@ L 350 = O, 0
£ 1,200 ; 3 d%b%
b + 300 § égégo
5 1,000 4 2 0®° o ©
- 250 © %o
= 800 4 B . N
2 b 200 S y +
E 00y | 150 & p2eey PCA
2 il Forv o PN
400 4 100 3 9
+
£ K-means o4
200 - L 50 =
0 - » 0

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
... almost $112 million due to credit card fraud in 2019.

EXPLANATION

Courtesy: https://spd.group/machine-learning/fraud-detection-with-machine-learning
https://www.sas.com/en us/insights/articles/risk-fraud/fraud-detection-machine-learning.html
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The Impact of Deep Learning on Application Areas

Synthesized Image

#NeuralDoodle

Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html Courtesy: https://arxiv.org/pdf/1808.02334.pdf
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Google Translate

1/14/7544919/go0ogle-translate-update-real-time-signs-conversations
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Self Driving Cars

LEFT REARWARD VEHICIE CAMERA ______—=

| MEDIUM RANGE VEHICLE CAMERA

MOTION FLOW LANE LINES LANE LINES ROAD FLOW IN-PATH OBJECTS ROAD LIGHTS OBJECTS ROAD SIGNS RIGHT REARWARD UEHICLE CAMERA

Courtesy: http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk
Network Based Computing Laboratory Hoti’25 16
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Food/Coffee Distribution in OSU Campus

Will have significant impact in distribution of groceries, food, packages, mails, etc.




Al-Driven Digital Pathology

e Applications B Ee=m

— Prostate Cancer Detection 6?' Ejg

— Metastasis Detection in Breast Cancer %

Macrodissection

Tumor nuclei enrichment

Molecular Profiling & Mutational Analysis

I Tumor DNA Purity?

— Genetic Mutation Prediction % Tumour /
Annotation
— Tumor Detection for Molecular Analysis Nclale;acid axtraction
Tumor nuclei/DNA purity is crucial to -
reduce contamination from b :CRr T S—
background DNA and quality of Y N)g’se M
molecular test result v

Discovery Diagnostics Theragnostics




What is Generative Al?

e Generative Al is a subset of Deep
Learning which creates new content like
text, images, videos, or audio based on

the data it was trained on.
It enables machine to mimic human
intelligence.

e Examples:
— Text: GPT, LLaMA, and DeepSeek.
— Images: DALL-E and Stable Diffusion.
— Videos: Runway and Sora.
— Audio: AudioPalLM and VALL-E.

A Subset of Al that empowers machine to
learn autonomously. It leamns from the
datasets and generate predictions
depending on the scenario.

Learns patterns from existing training
data and produces new and unique

e Whatis not Generative Al? output.

— Discriminative models that perform: Deep Subsetof ML that enables the
Learning operation of multi-layer neural

network possible.

e  Classification
e  Regression
e  Object detection
e  Clustering
e etc.
Courtesy: https://www.tutorialspoint.com/gen-ai/ml-and-generative-ai.htm




Generative Al — Inference

In inference, the model generates outputs based on input prompts. For autoregressive models (most LLMs),
inference follows an iterative loop, where each generated token (word) is fed back as input for the next step
until completion.

LLM inference requires low-latency, high-throughput
compute with the following key QoS (Quality of Service)
requirements: What can | help with?

— Low Latency — Ensures fast response times, crucial for interactive Wit 3

applications.

° o . . . . . + @ earch Q Reason
— Efficient Batch Processing — Optimized for serving multiple = °
gueries in parallel to maximize throughput.

— Mixed-Precision Support (FP16/BF16/INT8) — Reduces compute
overhead while maintaining accuracy.

B Create image Code ® Analyze images Brainstorm More

— High-Speed Interconnects (NVLink, InfiniBand) — Required for
multi-GPU inference to minimize communication bottlenecks.

— High Memory Bandwidth — To efficiently load large model
weights and handle activation memory. Online LLM Inferencing

Network Based Computing Laborator
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e Deep Learning Frameworks
e Deep Neural Network Training
e Distributed Data-Parallel Training

— Lab 1: Hands-on Exercises (Data Parallelism)

e |atest Trends in High-Performance Computing Architectures
e Challenges in Exploiting HPC Technologies for DL
e Advanced Distributed Training

— Lab 2: Hands-on Exercises (Advanced Parallelism)

e Distributed Inference Solutions
e Open Issues and Challenges
e Conclusion




Beginnings of DL Frameworks — Identifying Cats!

-~ -
= MIEER oo s e s s s s Ehe New York Eimes

Google's Artificial Brain Learns to Find Cat Videos How Many Computers to Identilj' a

When computer scientists at Google's mysterious X lab built a neural network of 16,000 computer processors witl
YouTube, it did what many web users might do -- it began to look for cats. ‘ at ? 16 000
{ |
L- s . aradifes & ~ &
L

TREND

th Givethisarticle 2> []

)
©
-3

Sense

3 began working on a simulation of the human braln. To test the
i in images, which may or may not contain faces, at various sizes
se higher-level concepts such as cat faces and human bodies.

tomorrow
ZD wmmmwn @
I\I E T trending innovation home & office business financ

/ innovation oo
Google brain simulator teache
recognize cats
A neural network of 16,000 computers was let loose on . s "
YouTube images for three days. What did it learn by the end? r n(ltfv 1,000 mach(nes ( 16,00(_) cores”). The researchers say the
How to recognize cats. gnizing 20,000 object categories from ImageNet, a leap of 70%
Also the system was set loose on 10 million random 200x200 pixel
' Wi L S, CoprRiir: o e 20,2012 An image of a cat that a neural network taught itself to recognize. Jim Wilson/The New gnition system successfully identified and grouped cat faces.
York Times iter scientist Andrew Y. Ng and the Google fellow Jeff Dean. Dr
o im @ o v training, ‘This is a cat,’ it basically invented the concept of a cat. We
el A Ng added “The idea is that instead of having teams of researchers
7 read i
must By John Markoff on of data at the algorithm and you let the data speak and have the

)sed to be more like how biological brains learn recognition.
June 25, 2012

The HP Elite Dragonfly
Chromebook has no
business being this good
Read now

MOUNTAIN VIEW, Calif. — Inside Google’s secretive X laboratory,




Beginnings of DL Frameworks — Identifying Cats!

e Done at the secretive X lab at Google
e Neural network of 16,000 computer processors with 1 billion connections
e This network browsed YouTube and began to look for cats

e Dataset:

— 10 million randomly selected YouTube video thumbnails

— 20, 000 different items

e This brain achieved 81.7% accuracy in detecting human faces, 76.7% accuracy in
identifying human parts, and 74.8% accuracy for cats

e Utilized model parallelism

e This work is described in detail in “Building High-Level Features Using Large Scale

Unsupervised Learning”
[1] https://arxiv.org/pdf/1112.6209.pdf



https://arxiv.org/pdf/1112.6209.pdf

Beginnings of DL Frameworks — DL with COTS HPC

e An influential paper “Deep Learning with COTS HPC systems” was published in
ICML ‘13 (http://proceedings.mlir.press/v28/coates13.pdf)

e The paper solves a similar problem as “identifying cats” but relies on GPUs and
MVAPICH for communication:

— 6.5 times larger model than state-of-the-art in few days with 2% of the original machines

— Neural networks of DistBelief scale can be trained with 3 machines
e Hardware:

— A cluster of GPU servers with InfiniBand interconnect

o Software:

— Custom CUDA kernels for matrix-vector and matrix-matrix operations

— MVAPICH2-GDR was used as the MPI library for communicating data between GPUs

e Most importantly, this project formed the basis of the cuDNN project at NVIDIA



http://proceedings.mlr.press/v28/coates13.pdf

The NVIDIA cuDNN Library

e cuDNN is a GPU-accelerated library of primitives for DNNs

e cuDNN provides optimized and efficient routines for:
— Forward and backward convolution
— Pooling
— Normalization

— Activation Layers

e cuDNN Accelerated DL Frameworks

Caffe Scaffez & Chainer @;g;:;: ‘\ @xnet

Toolkit MATLAB

T ..

Wolfram

3
44 PaddlePaddle O PyTo rch TensorFlow torch Language

o/




DL Frameworks, Hardware Architectures, and Distributed Training

e Main objectives of DL frameworks:

— Hide complex mathematics

— Allow users to focus on DL models
e Support for Parallelism:

— We have saturated the peak potential of current-
generation architectures

e Asingle GPU or a many-core CPU is not enough!

e Two strategies to deal with current limitations

— Parallel (multiple units in a single node) and/or
Distributed (multiple nodes) training of DNNs

— Dedicated hardware architectures for DNNs are being

developed (TPUs, Graphcore, etc.)

Math:

Minerva Program:

y=

Cl+e

1

U

Matrix yv = (W*x + b).Map(&Sigmoid)

¥ W

(a) Dataflow

— [ Wr+h)

y.1

o

.2

b.1

y.2

b.2

W.11

W.12

W.21

W, 22

(b) Dataflow after Data Partitioning

Statement and its dataflow fragment. The
data and computing vertexes with different

Courtesy: https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf

Network Based Computing Laborator Hoti’25

colors reside on different processes.



https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf

Deep Learning Frameworks

e Many Deep Learning frameworks
— Google TensorFlow C affe
— Facebook Torch/PyTorch
— Berkeley Caffe N I.\ Q
— Microsoft CNTK Tensor
— Chainer/ChainerMN

— Intel Neon/Nervana Graph PYT b RCH

e Open Neural Net eXchange (ONNX) Format




PyTorch — Background and History  py T b RCH

e PyTorch is a Python adaptation of Torch (written in Lua)

+
+
— Released in 2016 and has gained a lot of traction Q Caffez

e Several contributors and mainly backed by Meta

e Key selling point is ease of expression and “define-by-run” approach
e Build upon previous frameworks like Chainer, Lua Torch, and HIPS

e Originally a Python library but has been moved to C++/C

e Port of Torch framework into Python

e Support for GPU acceleration

e |ntegration with Numpy

e Automatically generated computational graphs

e Automatic differentiation




Many Other DL Frameworks...

Caffe — https://caffe.berkeleyvision.org

Keras - https://keras.io

Theano - http://deeplearning.net/software/theano/

Blocks - https://blocks.readthedocs.io/en/latest/

Intel BigDL - https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-

on-apache-spark

The list keeps growing and the names keep getting longer

— Livermore Big Artificial Neural Network Toolkit (LBANN) -
https://github.com/LLNL/Ibann

— Deep Scalable Sparse Tensor Network Engine (DSSTNE) -
https://github.com/amzn/amazon-dsstne
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Statistics about ML/DL Frameworks

Top 5 fundamental open-source Al frameworks:
e Al Index report offers very search trends

detailed trends about Al and ML

— Interesting stats. about DL © ferserfow @ preen - R e
frameworks

United States V22 -2N6/124 ~ All categories ¥ Web Search *

Interest over time @ 4 O <

e TheGradient™ reported in

2019 on PyTorch winning over
TensorFlow in CVPR, ICML, ICLR I‘ W

and other conferences

* https://thegradient.pub/state-of-ml-frameworks-2019-
pytorch-dominates-research-tensorflow-dominates-industry/

Courtesy: https://clockwise.software/blog/artificial-intelligence-framework/

Network Based Computing Laborator
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PyTorch vs. TensorFlow: Model Availability

e HuggingFace is a model repository for trained and tuned SOTA models

25

20

15

10

MNumber of Models

N

Number of Top 30 Models on HuggingFace

PyTorch Only

TensorFlow Only

PyTorch and TensorFlow

MNumber of Models

Number of Models on HuggingFace

80000

60000

92% of models are PyTorch
Exclusive

40000

20000

a
PyTorch Only TensorFlow Only PyTorch and TensorFlow

Courtesy: https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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PyTorch vs. TensorFlow: Research Papers & Papers with Code

PyTorch adoption grew from 7%
(in 2017) to 80% (2021)

Fraction of Papers Using PyTorch vs. TensorFlow

100%

TensorFlow W PyTarch

T5%

50%

Fercentage

25%

0%
2017 2018 2019 2020

Year

2021

Fercentage

70% -> PyTorch repositories, 4% ->
TensorFlow repositories (latest quarter)

Percentage of Repositories by Framework B Other [ PyTorch [ TensorFlow
100%

T5% /_/N’\N\
50%

25%

0%
Jan 2018 Jan 2019 Jan 2020 Jan 2021 Jan 2022

Repaository creation date

Courtesy: https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
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Understanding the Deep Neural Network Concepts

e Example of a 3-layer Deep Neural Network (DNN) — (input layer is not counted)
TN H*N.

Input Hidden Hidden Output
Layer Layer Layer Layer

Courtesy: http://cs231n.github.io/neural-networks-1/
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Essential Concepts: Back-propagation

e Back-propagation involves input output
complicated mathematics.

— Luckily, most DL Frameworks give
you a one line implementation --

model .backward () a'? = g( x) g% = g( a(z))
input neuron hidden neuron output neuron
linear combination activation linear combination activation output: ald
2@=0;x — aP=g(z) 23)=0,a —, JB)=g(z) target: y
e \What are Activation functions? Courtesy: https://www.jeremyjordan.me/neural-networks-training/

— RELU (a Max fn.) is the most common activation fn.

— Sigmoid, tanh, etc. are also used
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Essential Concepts: Activation Functions

e Sigmoid
e Tanh
e RelU

e |eaky RelU

M

2,

Summation and Bias

‘".
X

Inputs

=10 =5 0 5 10 04

(a) (b)

RelLU LeakyRelLU(a=0.2)
101 10
0 y LeakyReLU(z) {
- Z|=
ReLU(z}:{;’zh _ )
yotherwise s | -~ 1_0__-——-—5"'”0} : =

_5.
—-10 =5 3{] 3 10 -10

Activation Output (C) (d}

Courtesy: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.033308

z,z>()

az, otherwise
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Essential Concepts: Learning Rate (a)

Too low Just right Too high
16) 1(6) )(0)
/
9 6 8
A sm.all learning rate The npt.imal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
be.jfc_nre reach?ng the minimum point which lead to divergent
minimum point behaviors

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/
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Essential Concepts: Batch Size

e Batched Gradient Descent N

— Batch Size=1
e Mini-batch Gradient Descent

— Somewhere in the middle > » " " " " "
Mini Mini Mini Mini Mini Mini Mini
batch 1 batch 2 batch 4 batch 5 batch 6 batch 7 batch 8
— Common:

e Batch Size = 64, 128, 256, etc.

o Cind: :
Finding the optimal batch Batch Size One full pass overN is called an EQOCh of training

size will yield the fastest
learning.

Courtesy: https://www.jeremyjordan.me/gradient-descent/
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Overfitting and Underfitting

e OQverfitting — model > data = so model is not learning but memorizing your data

Underfitting — data > model 2 so model is not learning because it cannot capture the

complexity of your data

Underfitting 2 Balanced Overfitting

Courtesy: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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What is Computer Vision (CV)?

Computer vision is a field of artificial intelligence (Al) that enables computers and systems
to derive meaningful information from digital images, videos and other visual inputs — and
take actions or make recommendations based on that information.

Semantic Classification Instance
Segmentation

Classification Object detection

+ localization segmentation

CAT

TREE CAT CAT CAT DOG DUCK CAT DOG DUCK
\ J 7
No object
Just pixels Single object Multiple objects

Courtesy: https://www.ibm.com/topics/computer-vision
https://www.implantology.or.kr/articles/article/RvNO/
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Evolution of Computer Vision Models

CNN Architectures

AlexNet

Ny

1989 1998 2012 2016

DenceNet

2015 2017 | 2019/20

2018.10 | BERT

Pre-training transformer models
begin to be dominated in the
field of NLP.

ResNet

EfficientNet

Inception ResNeXt
V2V3va

V7 Labs

Courtesy: https://www.v7labs.com/blog/convolutional-neural-networks-guide
A Survey on Vision Transformer (Kai Han et. Al 2022) https://arxiv.org/abs/2012.12556

Vision Transformer Architectures

2017.6 | Transformer 2020.5 | GPT-3 2020.7 | iGPT End of 2020 | IPT/SETR/CLIP
Solely based on attention A huge transformer with The transformer model for NLP Applications of transformer model
Chan nel mechanism, the Transformer is 170B parameters, takes a can also be used for image pre- on low-level vision, segmentation
proposed and shows great big step towards general training. and multimodality tasks,
Boosted CNN performance on NLP tasks. NLP model. respectively.

2020.5 | DETR
A simple yet effective
framework for high-level vision
by viewing object detection as
a direct set prediction problem.

2020.10 | ViT
Pure transformer
architectures work well for
visual recognition.

2021 | ViT Variants
Variants of ViT models,
e.g., DeiT, PVT, TNT, and
Swin.
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What is Natural Language Processing (NLP)?

Natural Language Processing (NLP) is a subfield of artificial intelligence (Al) that focuses on

the interaction between computers and human language. It aims to enable computers to
understand, interpret, and generate human language in a valuable way.

Information Retrieval

Sentiment Analysis
Doc A Q

Information Extraction
N

CRgE

Natu ral QuestionAnswering

Language @ T

Processing e

February 26,
1966

Doc | n—

!

Doc 2 M—

Doc 3

Machine Translation

Courtesy: https://www.ontotext.com/blog/top-5-semantic-technology-trends-2017/
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Evolution of Language Models

A G
5 ? Language Model Sizes Over Time
Evolution of Large Language Models
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Courtesy: https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
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Mixture of Experts (MoE)

e Ensemble methods have long been powerful machine

learning and deep learning methods to break down

problems into easier subproblems f

Weights
Generated By

— E.g. for vision classification, train separate “expert” models on subdomains (animal el

classifier, car classifier, etc), then route the incoming image to the appropriate /\
model depending on its subclass (animal, car, etc)

Expert 3 L Expertn

— E.g. for multilingual language modeling, train separate “expert” models for each
language, then route incoming words to the appropriate model depending on its

Gating Network

language

e Mixture-of-experts (MoE) models are ensembles of component

Input

“experts” coupled with a “gating” function that routes tokens to their
appropriate expert

— Model-type agnostic

Credit: https://deepgram.com/learn/mixture-of-experts-ml-model-guide
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MoE State of the Art: DeepSeek-V3
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e Designed for reasoning, DeepSeek excels in
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logic, pattern recognition, math, and tasks
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where typical generative Al models fall short.

=}

MMLU-Pro PQA-Diamond MATH 500 AIME 2024 Codeforces SWE-bench Verified

e The training of DeepSeek-V3 is cost-effective o

2]

due to the support of FP8 training and Benchmark performance of DeepSeek-V3 and its counterparts

communication optimizations.

Credit: https://arxiv.org/html|/2412.19437v1
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Outline

e Distributed Data-Parallel Training
— Lab 1: Hands-on Exercises (Data Parallelism)

e |atest Trends in High-Performance Computing Architectures
e Challenges in Exploiting HPC Technologies for DL
e Advanced Distributed Training

— Lab 2: Hands-on Exercises (Advanced Parallelism)

e Distributed Inference Solutions
e Open Issues and Challenges
e Conclusion




The Need for Parallel and Distributed Training

e \Why do we need Parallel Training?

e Larger and Deeper models are being proposed
— Language Models: RNNs -> Transformers -> BERT — GPT-(1,2,3,4)
— Vision Models: AlexNet -> ResNet -> NASNet — AmoebaNet - Vision Transformers
— DNNSs require a lot of memory and a lot of computation

— Larger models cannot fit a GPU’s memory
e Single GPU training cannot keep up with ever-larger models
e Community has moved to multi-GPU training

e Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

e Multi-node (Distributed or Parallel) Training is necessary!!




Parallelization Strategies

L .  Machine 4 ——— )
e Some parallelization strategies.. i 7_{;
. . VL T L 1
— Data Parallelism or Model Parallelism { Machine 2 ]:i Machine 3 !
' ! |
— Hybrid Parallelism "“'}:'-:'-:'-:'-j-'sE:ﬁ:, """""""
I Machine 1 I
|
|
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Hybrid (Model and Data) Parallelism
Data Parallelism
Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Network Based Computing Laborator Hoti’25


http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Need for Data Parallelism

Mini-Batch Gradient Descent
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Input Dataset Machine 1 Output

Drawback: If the dataset has 1 million images, then it will take forever to train the model on such
a big dataset

Solution: Can we use multiple machines to speedup the training of Deep learning models? (i.e.
Utilize Supercomputers to Parallelize)




Need for Communication in Data Parallelism
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Problem: Train a single model on whole dataset,
not 5 models on different sets of dataset
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Data Parallelism
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Allreduce Collective Communication Pattern

e Element-wise Sum data from all processes and sends to all processes

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype,
MPI_Op operation, MPI_Comm comm)

Input-only Parameters Sendbuf (Before)

Parameter Description
sendbuf Starting address of send buffer Tl 12 13
recvbuf Starting address of recv buffer
type Data type of buffer elements . "
count Number of elements in the buffers '
operation Reduction operation to be performed (e.g. sum) Recvbuf (After)
comm Communicator handle n - 3

4
Parameter Description 182
recvbuf Starting address of receive buffer 16




Data Parallelism (Cont.)

Batch
Loop {}
e Stepl: Data Propagation ,
— Distribute the Data among GPUs \\\\\\
e Step2: Forward Backward Pass S | farams S [harems S s > arams
P ] =mmn L O A
— Perform forward pass and
_ L, L, L, L,
calculate the prediction - L e L s - L s - L
— Calculate Error by comparing L L L L
prediction with actual output el Lol Local Local
Gradients Gradients Gradients Gradients
— Perform backward pass and T ] | EEEE (11 ] | EEEE
calculate gradients | e ez et
e Step3: Gradient Aggregation
— Call MPI_Allreduce to reducethe | - T N
local gradients Glbar | Glohal oo | [ Global
. Gradients Gradients Gradients Gradients
— Update parameters locally using EEEE (1] ] (T 1] [ T[]
global gradients -
Update Parameters

. T TT T |
;  l.Data
I Propagation !
L

;2 Forward :

I Backward

: 3. Gradient :

I Aggregation |
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Impact of Large Batch Size

GoogleNet (ImageNet) on 128 GPUs

250
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t c
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e o & L=t & > >
5 0
Eopl | | | | . | | 8 16 32 64 128
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mini-batch size
W Caffe m OSU-Caffe (1024) m OSU-Caffe (2048)

Large Batch Size is bad for Accuracy But good for speed and scalability

A. A. Awan et al., S-Caffe: Co-designing MPI Runtimes and Caffe

Courtesy: https://research.fb.com/publications/imagenetlkinlh/
for Scalable Deep Learning on Modern GPU Clusters. PPoPP '17
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Essential Concepts: Model Size

e How to define the “size” of a model? (model is also called a DNN or a network)

e Size can mean several things and context is important

— Model Size: # of parameters (weights on edges)

— Model Size: # of layers (model depth) Weights on Edges

, final output
Inception cell

input
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Impact of Model Size and Dataset Size

model > data

e [arge models =2 better accuracy

e More data =2 better accuracy

e Single-node Training; good for

Network Size

— Small model and small dataset Single Machine

e Distributed Training; good for: data > model | pata Size

— Large models and large datasets

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Synchronous vs. Asynchronous Training
e Epochs per second (EPS)?

— A variant of images/second

— Basically, what is the speed of A Naive Async SGD
aive Async

training the model

e Accuracy per Epoch (APE)?

— E.g. 60% in one full pass over the
dataset

Epochs per Second

>
Accuracy Per Epoch

e Async = Higher EPS but lower APE

¢ Syn C 9 H Ig h er A P E b Ut | ower E PS Courtesy: http://engineering.skymind.io/distributed-deep-learning-

part-1-an-introduction-to-distributed-training-of-neural-networks
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Getting Set-up for the Hands-on Exercises

e You will run the experiments on the OSU RI2 cluster

e Please use the account name and password from http://go.osu.edu/dltutorial

e E.g.sshri2tut01@ri2.cse.ohio-state.edu and tutorialO1 as password

e Once on the shell, go to /opt/tutorials/dl-tutorial (copy/paste the following line)
cd /opt/tutorials/hoti-hidl-tutorial
e There is a folder for each lab (labs 1-2)
e Take alook at the README.md file for all scripts
— copy/paste the run commands from README.md and not the slide deck

Network Based Computing Laborator
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Lab 1 - DNN Training using PyTorch

e QObjectives
— How to train PyTorch and TensorFlow models on a single NVIDIA GPU?
— How to perform distributed training of PyTorch and TensorFlow models on multiple GPUs
using InfiniBand and NVIDIA GPUs?
e Tasks
— Task 1: PyTorch Single GPU
— Task 2: PyTorch Multi-GPU
— Task 3: TensorFlow Single GPU
— Task 4: TensorFlow Multi-GPU

Network Based Computing Laborator



Distributed Training with PyTorch using Horovod

e Examples to run data-parallel training with PyTorch using Horovod

e Available from: https://github.com/horovod/horovod/tree/master/examples

e To run ResNet50 with synthetic data with a single GPU, run

python pytorch_synthetic_benchmark.py \
--batch_size=32\

-——-num-iters=10 \



https://github.com/horovod/horovod/tree/master/examples

Lab 1 — Task 1: Run PyTorch on a single GPU

$ cd /opt/tutorials/hoti-hidl-tutorial/labl
$ srun -N 1 --reservation=dltutorial run pytorch bench single.sh

+ python /opt/tutorials/hidl-env/horovod/examples/pytorch/pytorch synthetic_benchmark.py --
batch-size=64 --model=resnet50 --num-iters=5

Model: resnet50 V100

Batch size: 64
Number of GPUs: 1

Running warmup. ..

Running benchmark. ..

Iter #0: 336.0 img/sec per GPU
Iter #1: 336.0 img/sec per GPU
Iter #2: 336.0 img/sec per GPU
Iter #3: 336.0 img/sec per GPU
Iter #4: 335.8 img/sec per GPU
Img/sec per GPU: 336.0 +-0.2




Lab 1 — Task 2: Run PyTorch on two nodes with 1 GPU/node
(using MVAPICH-Plus)

$ srun -N 2 --reservation=dltutorial run pytorch bench multi mvp.sh

+ mpirun_rsh --export-all -np 2 --hostfile hosts_424919 python /opt/tutorials/hidl-
env/horovod/examples/pytorch/pytorch synthetic_benchmark.py --batch-size=64 --model=resnet50 --
num-iters=>5

Model: resnet50 V100

Batch size: 64
Number of GPUs: 2
Running warmup. ..
Running benchmark. ..
Iter #0: 326.
Iter #1: 325.
Iter #2: 324.
Iter #3: 324.5 img/sec per GPU
Iter #4: 324.6 img/sec per GPU
Img/sec per GPU: 325.2 +-1.8

img/sec per GPU
img/sec per GPU
img/sec per GPU

U W o




Distributed Training with TensorFlow using Horovod

e Examples to run data-parallel training with TensorFlow using Horovod

e Available from: https://github.com/horovod/horovod/tree/master/examples

e To run ResNet50 with synthetic data with a single GPU, run

python tensorflow2_synthetic_benchmark.py\
--batch_size=32\

-——-num-iters=10 \

Network Based Computing Laborator
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Lab 1 — Task 3: Run TensorFlow on a Single GPU

$ cd /opt/tutorials/sca-hidl-tutorial/labl
$ srun -N 1 --reservation=dltutorial run tf bench single.sh

+ python /opt/tutorials/hidl-env/horovod/examples/tensorflow2/tensorflow2 synthetic_benchmark.py -
-batch-size=64 --model=ResNet50 --num-iters=5

Model: ResNet50
Batch size: 64
Number of GPUs: 1

Running warmup. ..

Running benchmark. ..
Iter #0: 343.
Iter #1: 342.
Iter #2: 342.
Iter #3: 342.5 img/sec per GPU
Iter #4: 342.4 img/sec per GPU
Img/sec per GPU: 342.7 +-1.2

img/sec per GPU
img/sec per GPU
img/sec per GPU
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Lab 1 — Task 4: Run TensorFlow on two nodes with 1
GPU/node (using MVAPICH3-GDR)

$ srun -N 2 --reservation=dltutorial run tf bench multi mvp.sh

+ mpirun_rsh --export-all -np 2 --hostfile hosts_424948 python /opt/tutorials/hidl-
env/horovod/examples/tensorflow2/tensorflow2 synthetic_benchmark.py --batch-size=64 --model=ResNet50 --num-iters=5

Model: ResNet50
Batch size: 64
Number of GPUs: 2

Running warmup. ..

Running benchmark. ..

Iter #0: 314.3 img/sec per GPU
Iter #1: 314.2 img/sec per GPU
Iter #2: 313.6

Iter #3: 314.3 img/sec per GPU
Iter #4: 314.6 img/sec per GPU
Img/sec per GPU: 314.2 +-0.6

img/sec per GPU

1.83X on
2 GPUs




Hands-on Exercises: Key Takeaways from DL labs

e Deep Learning models can be trained in multiple ways

— Examples to run data-parallel training with Horovod are available at
“https://github.com/horovod/horovod/tree/master/examples”

— Single/Multiple GPU jobs -- similar
— Horovod can be configured MPI, GLOO, NCCL, and oneCCL.

— MVAPICH-Plus with CUDA-aware design delivers near-linear speedup
for multi-node training

— User guide to install the full HiDL stack:
https://hidl.cse.ohio-state.edu/userguide/horovod/



https://hidl.cse.ohio-state.edu/userguide/horovod/
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Latest Trends in High-Performance Computing Architectures
Challenges in Exploiting HPC Technologies for DL
Advanced Distributed Training

— Lab 2: Hands-on Exercises (Advanced Parallelism)

Distributed Inference Solutions
Open Issues and Challenges
Conclusion




Drivers of Modern HPC Cluster Architectures

Accelerators
high compute density, high
performance/watt
>1 TFlop DP on a chip

High Performance Interconnects -
Multi-/Many-core InfiniBand

Processors <1usec latency, 200Gbps Bandwidth>

e Multi-core/many-core technologies

SSD, NVMe-SSD, NVRAM

e Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
e Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
e Accelerators (NVIDIA GPGPUs)

e Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

; ,;? — \‘v'—_// "3 = Q —— _‘_\\

Fugaku Summit Sierra Sunway TaihulLight

Network Based Computing Laborator



High-Performance Architectures for Distributed DL

e Hardware Architectures

— Interconnects

* InfiniBand, RoCE, Omni-Path, Slingshot, etc.

— Processors
e GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.

e Communication Middleware

— Message Passing Interface (MPI)
e CUDA-Aware MPI

— NVIDIA NCCL




Overview of High Performance Interconnects

High-Performance Computing (HPC) has adopted advanced interconnects and protocols
— InfiniBand (IB)
— Omni-Path
— High Speed Ethernet 10/25/40/50/100/200 Gigabit Ethernet/iWARP
— RDMA over Converged Enhanced Ethernet (RoCE)
Very Good Performance
— Low latency (few micro seconds)
— High Bandwidth (400 Gb/s with NDR InfiniBand)
— Low CPU overhead (5-10%)

OpenFabrics software stack with IB, Omni-Path, iWARP and RoCE interfaces are driving HPC systems

Many such systems in Top500 list




Link Bandwidth per direction, Gb/s
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Hardware for DNN Training and Inference: TPUs
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e CISC style instruction set

e Uses systolic arrays as the heart of multiply unit

Courtesy: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

: https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/
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Hardware for DNN Training and Inference: IPUs

RESNET-50 TRAINING

e Specifically designed for Al workloads — an
Intelligence Processing Unit (IPU)
— Massively parallel s
— Low-precision floating-point compute

single 52 IPU Accelerator cards
mn N L] .

— Higher compute density

° Early benChmarkS ShOW 10'100)( SDEEdUp LSTM SINGLE LAYER INFERENCE
over GPUs
— Presented at NIPS 2017 vk s i

e HPC Wire: Microsoft Azure IPU instances

https://www.hpcwire.com/2019/11/15/microsoft-azure-adds-
graphcores-ipu/

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications
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Hardware for DNN Training: Habana Gaudi

e Habana Labs — Training Accelerator called Gaudi — (HotChips ‘19)
e Gaudi— Al processor with RoCE integrated

e Gaudi software — Enables high-level frameworks 1,800 18
600 | mGaudi mV100 = T4 | .
e Intel has acquired Habana for 52 billion! 4 400 - | 14
2 1,200 - s 12 =
o ()
S 1,000 - 10 =
W @
L 800 - -8 2
@ 600 | 6 &
& 400 - - 4
£ 200 - - 2
0 - -0

ResNet-50 IPS ResNet-50 IPS/W

Figure 1. Gaudi emulated performance. For training the simple
ResNet-50 model, Habana's Gaudi card offers throughput sim-
ilar to that of Nvidia's high-end V100 GPU at half the power.
It also beats Nvidia's Tesla T4 card in performance per watt.

Courtesy: https://habana.ai/wp-content/uploads/2019/06/Habana-Offers-Gaudi-for-Al-Training.pdf
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Hardware for DNN Training: Cerebras

e Cerebras: First-Gen Wafer-Scale Engine (WSE) contains 400,000 Sparse Linear
Algebra Compute (SLAC) Cores

e Swarm Communication fabric in a 2D mesh with 100 Pb/s of bandwidth

e Teased World’s Largest Chip with 2.6 Trillion 7nm Transistors and 850000
Cores (HotChips ‘20)

Courtesy: https://www.cerebras.net/product/#chip, https://www.tomshardware.com/news/worlds-biggest-chip-cerebras-7nm-26-trillion-
transistors-850000-cores-wafer-scale-engine
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High-Performance Architectures for Distributed DL

e Hardware Architectures

— Interconnects

e InfiniBand, RoCE, Omni-Path, etc.

— Processors

e GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.

e Communication Middleware

— Message Passing Interface (MPI)
e CUDA-Aware MPI

— NVIDIA NCCL




Parallel Programming Models Overview

P1 P2 pP3 PL <«<—> [ P2  <«—> | P3 PL <—> P2 <«—> P3
| | | | | l N
I I
| |
Shared Memory Memory Memory Memory Memory | | Memory |, Memory
Logical shared memory
! !
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, DSM MPI (Message Passing Interface) OpenSHMEM, UPC, Chapel, X10, CAF, ...

e Programming models provide abstract machine models

e Models can be mapped on different types of systems

— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
e PGAS models and Hybrid MPI+PGAS models are gradually receiving importance

Network Based Computing Laborator



Allreduce Collective Communication Pattern

e Element-wise Sum data from all processes and sends to all processes

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype,
MPI_Op operation, MPI_Comm comm)

Input-only Parameters Sendbuf (Before)

Parameter Description
sendbuf Starting address of send buffer Tl 12 13
recvbuf Starting address of recv buffer
type Data type of buffer elements . "
count Number of elements in the buffers '
operation Reduction operation to be performed (e.g. sum) Recvbuf (After)
comm Communicator handle n - 3

4
Parameter Description 182
recvbuf Starting address of receive buffer 16




Overview of the MVAPICH Project

e High Performance open-source MPI Library TSR
e  Support for multiple interconnects ﬁ/&"\j}%“
— InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, /'? ’\\\\ 24 YearS & =N |‘ .
OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11 \ Count’ng! .._\.\\W/
e  Support for multiple platforms 2001 _2025 ///”\\\

—  x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
* Used by more than 3,450 organizations in 92 countries

(listed under the Users Tab of the MVAPICH page)

e Started in 2001, first open-source version demonstrated at SC ‘02

e  Supports the latest MPI-4.1 standard

e  http://mvapich.cse.ohio-state.edu e  More than 1.93 Million downloads from the OSU site

e Additional optimized versions for different systems/environments: directly

- MVAPICH-Plus (Unification of MVAPICH2-X and MVAPICH2-GDR), since 2023 *  Empowering many TOP500 clusters (Nov ‘24 ranking)

= MVAPICH2-X (Advanced MPI + PGAS), since 2011 — 15t 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

- MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
PP ( ) ( ) — 527 448, 448 cores (Frontera) at TACC

—  MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

— 72, 288,288 cores (Lassen) at LLNL
—  MVAPICH2-Virt with virtualization support, since 2015

—_ 1St 2 1 1
- MVAPICH2-EA with support for Energy-Awareness, since 2015 91, 570,020 cores (Nurion) in South Korea and many others

—  MVAPICH2-Azure for Azure HPC IB instances, since 2019 e Available with software stacks of many vendors and Linux

- MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019 Distros (RedHat, SUSE, OpenHPC, and Spack)

e Tools: )
e Partner in the 52" ranked TACC Frontera system

— OSU MPI Micro-Benchmarks (OMB), since 2003
— OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

e Empowering Top500 systems for more than 20+ years
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GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR

e Standard MPI interfaces used for unified data movement
e Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

e QOverlaps data movement from GPU with RDMA transfers

At Sender: -

MPI_Send(s_devbuf, size, ...); inside
wvaricz$  §

1 -
I E
: g
1
1
1

\

\

\
N
~

At Receiver:
MPI Recv(r devbuf, size, ...);

High Performance and High Productivity




Latency (us)

Bandwidth (MB/s)

Optimized MVAPICH2-GDR Design

30
25
20
15
10

GPU-GPU Inter-node Latency GPU-GPU Inter-node Bi-Bandwidth
6000
7 5000
S 4000
5 3000 11X
1.85us | 10x 2 2000
S 1000
0 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K 0 ki ;—.—.—A—t—t—r‘
SN Y e 8wy R Ry YN ¥
Message Size (Bytes) oo’
Message Size (Bytes)
«de=MV2-(NO-GDR) MV2-GDR 2.3 —de=\V2-(NO-GDR) MV2-GDR-2.3
GPU-GPU Inter-node Bandwidth
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2000 9x MVAPICH2-GDR-2.3.1
oo Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores
500 NVIDIA Volta V100 GPU

& *—‘h—l_‘_‘—"—r‘ Mellanox Connect-X4 EDR HCA
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2 4 8 16 32 64 128256512 1K 2K 4K CUDA 9.0

Mellanox OFED 4.0 with GPU-Direct-RDMA
Message Size (Bytes)
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NCCL Communication Library

e NVIDIA Collective Communication Library (NCCL)
e Main Motivation: Deep Learning workloads
e NCCL1- efficient dense-GPU communication within the node

e NCCL2- multiple DGX systems connected to each other with InfiniBand systems

L . == . _J!l““

Multi-GPU

GPU Multi-GPU Multi-node

Courtesy: https://developer.nvidia.com/nccl
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Outline

e Challenges in Exploiting HPC Technologies for DL
e Advanced Distributed Training

— Lab 2: Hands-on Exercises (Advanced Parallelism)

e Distributed Inference Solutions
e Open Issues and Challenges
e Conclusion
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Broad Challenge: Exploiting HPC for Machine
Learning/Deep Learning/Data Science Frameworks

How to efficiently scale-out

Machine Learning (ML)/Deep Learning (DL)/Data
Science frameworks and take advantage of
heterogeneous

High Performance Computing (HPC) resources?

Network Based Computing Laborator



Research Challenges to Exploit HPC Technologies

1. What are the fundamental
issues in designing DL
frameworks?

— Memory Requirements
— Computation Requirements

— Communication Overhead

2. Why do we need to support
distributed training?

— To overcome the limits of
single-node training

— To better utilize hundreds of
existing HPC Clusters

Network Based Computing Laborator

1 ;
\) Deep Learning and Machine Learning Frameworks

Caffe/
CNTK Caffe2 TensorFlow MXNet
[ } [ OSU-Caffe

N\ -
\\ ,/

\ Major Computation and Communication Phases in DL Frameworks ,’

\ /
\\ Model Propagation FEIIERE Gradient /
A Pag Backward Aggregation /

2' Communication Runtimes to support
| Distributed Training

R =

&




Research Challenges to Exploit HPC Technologies (Cont’d)

3. What are the new design challenges
brought forward by DL frameworks for
Communication runtimes?

Deep Learning and Machine Learning Frameworks

Caffe/
communicationandReductions :ooooooooooooooooooooooooooooooooooooooooooooooooooo. ,/'
_ GPU Buffers (CUDA-AWB reness) V:\\ Major Computation and Communication Phases in DL Frameworks §',/
° \\ Model Propagation Forward Gradier?t /‘.
° \ Backward Aggregation °
4. Can a Co-design approach help in achieving 4 - P P P Co-Design
Scale-up and Scale-out efficiently? . Communication Runtimes (MPI/NCCL/Gloo/MLSL) Opportunities
— Co-Design the support at Runtime - , , .
o * | Point-to-Point CUDA- Large-message 3
level and Exploit it at the DL e Operations Awareness Collectives
Framework Ievel :...................................................:

— What performance benefits can be
observed?

— What needs to be fixed at the
communication runtime layer?

¥ ¥ ¥
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Outline

Advanced Distributed Training

— Lab 2: Hands-on Exercises (Advanced Parallelism)

Distributed Inference Solutions
Open Issues and Challenges
Conclusion




Solutions and Case Studies: Exploiting HPC for DL

e Data Parallelism

— Distributed Training for
TensorFlow and PyTorch

— AccDP
e Model and Hybrid Parallelism
— ZeRO

— 3D Parallelism

Deep Learning and Machine Learning Frameworks

:

) ] o)

\:.................................................... l
U4
V.\ Major Computation and Communication Phases in DL Frameworks . ,/
°\ :'
. \\ Model Probagation Forward Gradient A
0 \ pag Backward Aggregation ':
: B | B Co-Design
[ ] -
g Opportuniti
: Communication Runtimes (MPI/NCCL/Gloo/MLSL) pportunities
: .
. Point-to- °
. ) Large-message :
o Point CUDA-Awareness . .
o _ Collectives :
¢ | Operations 5
.....................................................

¥ ¥
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MVAPICH (MPI)-driven Infrastructure for ML/DL Training:

o MVAPICH-Plus for o MVAPICH-Plus for
MVAPICH for CPU Training MVAPICH for CPU Training o
GPU Training GPU Training

More details available from: https://github.com/OSU-
Nowlab/pytorch/tree/hidl-2.0 and http://hidl.cse.ohio-state.edu

MPI4DL -
|
1
l
< ML/DL Applications > : < ML/DL Applications >
|
\ i
|
/ \ : \ 4
Tensor Flow PyTorch MXNet i PyTorch
i
|
/‘ :
Horovod E Torch.distributed DeepSpeed ?
I
1
1
|
|
|
1
1
1
|
!
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HiDL 2,0 RE|ease e Vendor-neutral stack with competitive performance

and throughput to GPU-based collective libraries

e Tested on modern HPC clusters (etc, OLCF Frontier,

TACC Vista) with up-to-date accelerator generations
e Full support for PyTorch Native DDP training (etc. AMD NVIDIA)

e Support for PyTorch 2.7.1 and later versions

e Support for optimized MPlI communication e Compatible with

— Efficient large-message collectives (e.g., Allreduce) — InfiniBand Networks: Mellanox InfiniBand adapters (EDR,
on various CPUs and GPUs FDR, HDR, NDR)

— GPU-Direct Ring and Two-level multi-leader

— Slingshot Networks: HPE Slingshot
algorithms for Allreduce operations

— GPU&CPU Support:
e NVIDIA GPU A100, H100, GH200
e AMD MI200 series GPUs

— Software Stack:

— Support for fork safety in distributed training
environments

— Exploits efficient large message collectives in
MVAPICH-Plus 4.0 and later
e CUDA [12.x] and Latest CuDNN

e Open-source PyTorch version with advanced MPI e« ROCM [6.X]
backend support - Available in our PyTorch tag e (NEW)PyTorch [2.7.1]

e (NEW)Python [3.x]

More details available from: https://github.com/0OSU-Nowlab/pytorch/tree/hidl-2.0

and http://hidl.cse.ohio-state.edu
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Distributed Data Parallel Training on GH200 (Vista)

Torch Distributed

Application: GPT-2 model training
using nanoGPT.

Hardware: Vista System @TACC

— GH200 Superchips each with:
e 72 ARM cores with 120 GB LPDDR.
e H100 GPU with 96GB HBM3.

— NVIDIA NDR InfiniBand (400Gb/s)

Software:

— PyTorch 2.6.0
— NCCL2.21.5
— MVAPICH-Plus 4.1

mNCCL2.21.5 mMVAPICH-Plus

4.873 4.873

2.460 2.446
1.237 1.235
0.626 0.624
0.3200.318
. . 0.1660.165 (5 pgg 0.088
[ | T et
1 2 4 8

16 32 64
# GH200 Nodes (1 GPU per node)

NN WL A RO
o o vt o w o

Time per iteration (s)

o ==
oo o

©
o



Distributed Data Parallel Training (Frontier)

GPT-2 DDP 1.5 Million Token per lter

MVAPICH-Plus 4.1 [ RCCL 2.21.5 + OFI
49932.449932.4

ms per iter

50000

40000

30000

25329.425215.2

20000

12804.112649.2

10000

0

1 GPU

2 GPU 4 GPU

# GPUs

GPT-2 DDP 1.5 Million Token per Ilter

ms per iteration

I MVAPICH-Plus 4.1 [l RCCL 2.21.5 + OFI
4000

3293.73314.7

3000

2000 1640.31674.7

1000

16 GPU

32 GPU 64 GPU 128GPU

# GPUs

End-to-end GPT-2 Training with Openwebtext using Distributed Data Parallel

12.4% less ms per iteration (compared to RCCL 2.21.5 + OFI) for 128 GPUs




Distributed TensorFlow on ORNL Summit (1,536 GPUs)

e ResNet-50 Training using

TensorFlow benchmark on MVAPICH2-GDR 2.3.4

450
SUMMIT -- 1536 Volta S 200 ImageNet-1k has 1.2 million images
GPUs! g oo
o 2 200 MVAPICH2-GDR reaching ~0.42 million
o
@ images per second for ImageNet-1k!
e 1,281,167 (1.2 mil.) images & 2> gesp d J
S 200
o
g 150
e Time/epoch = 3 seconds - 100
50 l
0 — [ |
e Total Time (90 epochs) 1 2 4 6 12 24 48 96 192 384 768 1536
=3 x90 =270 seconds = 4.5 Number of GPUs
minutes! B MVAPICH2-GDR 2.3.4

*We observed issues for NCCL2 beyond 384 GPUs

Platform: The Summit Supercomputer (#2 on Top500.org) — 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1




Distributed TensorFlow on TACC Frontera (2048 CPU nodes)

e Scaled TensorFlow to 2048 nodes on
Frontera using MVAPICH2 and IntelMPI

262144 —
65536 o
_ _ , 16384 o
e MVAPICH2 delivers close to the ideal S 4056 . _—
performance for DNN training § 1024 o
L
E 64
e Report a peak of 260,000 images/sec on 16
4
2048 nodes .
1 2 4 8 16 32 64 128 256 512 10242048
. Nodes
e On 2048 nodes, ResNet-50 can be trained
——MVAPICH2-X Ideal

in 7 minutes!

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep
Learning on Frontera”, DLS 19 (SC ’19 Workshop).




AccDP: GPU Utilization for DNN Training

e Modern GPUs are computational workhorses in :
100% Image size 32x32

gllzl(lj\lstyst.ems ind are used in parallel to reduce S Image size 224x224
raining time.
& c 80%
e However, GPUs are not fully utilized by DNN =
. . : : N 60%
training workloads especially for small-to-medium =
DL models and/or input size. 5 40%
D
e The figure shows the resource utilization of NVIDIA 20%
A100 GPU during the training phase of different
DNN models with two input sizes. (We choose the 0%
largest possible batch sizes for best performance) ResNet18  ResNet34  ResNet50  ShuffleNet MobileNetV2
Model
e \We observed a utilization as low as 43% for
ResNet18 with 32x32 input size to 63% for NVIDIA A100 GPU utilization during DNN training of
ResNet50 with image size 224x224. different models with different input sizes

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern
GPU-Based HPC Clusters”, HiPC’22.
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AccDP: Performance Improvement

Multi node with ResNet18 Multi node with ShuffleNet
e ResNetl8 training throughput comparison between | ¢ ShuffleNet training throughput comparison between
regular training and AccDP (proposed design) for regular training and AccDP (proposed design) for
different DNN models on up to 8 nodes 2 GPUs per different DNN models on up to 8 nodes 2 GPUs per
node (16 GPUs) with 4 MPS clients per GPU node (16 GPUs) with 4 MPS clients per GPU.
- g4 e e VR w50 Regular Training
ﬁ S B AccDP 30% g 2 5 AccDP 62%
s 330 < 340
2 2 3 3
£ " g £30
2 — — = 20
o @ 10
£ o NN N g, N N §
2 4 8 16 =
H#GPUs 2 4 uopys 8 16

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern
GPU-Based HPC Clusters”, HiPC’22.
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Solutions and Case Studies: Exploiting HPC for DL

Deep Learning and Machine Learning Frameworks

e L ) () ()

. . \:...Q................................................ l
e Model and Hybrid Parallelism . : : — : .« 7

N Major Computation and Communication Phases in DL Frameworks . ,/
[ \ J

— ZeRO TN . Forward Gradient A
o \\ G Backward Aggregation /e

— 3D Parallelism : —
: & & § | CoDesign
: -
: Communication Runtimes (MPI/NCCL/Gloo/MLSL) Opportunities
. .
. Point-to- °
. . Large-message °
o Point CUDA-Awareness . .
o ; Collectives :
* |_Operations .
.....................................................
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DeepSpeed ZeRO

/eR0O 4-way data parallel training

Using:
*P_. (Optimizer state)
* P, (Gradient)
* P, (Parameters)

Courtesy: https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
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Memory Anatomy of a DNN (for ZeRO/FSDP)

Key question: What is the GPU memory M required to fit a model during training:

MTot:Mm+Mo—|_Mg+Ma

Where M, is model memory, M, optimizer memory, M, gradient memory, and M, activation memory

- p: Num model parameters

- k;: Low precision B/param klfgip’ > =3 M. — %, z>1

- k2 High precision B/param My = ky .p, else °© (3kp) - p, else

- d: GPU Devices

- s:Sequence length

- b: Batch size (ky or kp)-p S 9

- h: Hidden size M, < { N M, ~ sbhL([16k; + 2] + [2k + 1] 2-2)
- L: Transformer layers (kl Of kh) 'p, else d l | h

- a: Num attention heads

- Z: ZeRO stage

Network Based Computing Laborator



DeepSpeed ZeRO

Instead of being limited by the device memory, we are now limited by the aggregate
memory

E.g. You want to train a trillion-parameter model on 1024 GPUs with 16 GB memory each

— With 16-bit precision, model+optimizer = ~16 TB of memory

16 TB GB

— We can fit this into 1024 GPUs with ZeRO: 1024 GPUS — 16 “PU

ZeRO-Infinity introduces offload to CPU memory or NVMe disk for the truly desperate

Since ZeRO removes the DP memory limit, do we still need MP?

— There are still models and data samples (e.g. pathology, astronomy, etc) that don’t fit inside GPU memory even
with ZeRO

— We can use pipeline + tensor parallelism along with ZeRO for these cases (called 3D-parallel, more on this later!)




Tensor Parallelism

e |LLM models consist of matrix multiplications.

Input tensor Model weights
Batch Hidden dim = Batch |
Hidden dim Output dim
Output dim

e Tensor Parallelism splits along hidden dim, and distributes the computation to
multiple GPUs.

GPU 0O: Batch Hidden dim — Batch | 1

Hidden dim /
All Reduce

GPU 1: Batch Hidden dim =5 Batch | J

Hidden dim

Output dim
Output dim

Output dim




3D Parallelism

e Combine PP with TP and DP for 3D parallelism. For example:

— Split given layer(s) via TP across 4 GPUs
— Split the model into 4 pipeline stages
— The above TP+PP combination compose a single DP unit

— Use 2 DP units with the above configuration for 32-GPU parallelism

e Question: Given that each node contains 8 GPUs, where should you place the node boundaries?

/£ = I"‘I/
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|
/
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o GPUO GPU 8
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o GPU 4 GPU 12 GPU 20
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Y
Pipeline Parallel

Credit: https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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3D Parallelism

e Combine PP with TP and DP for 3D parallelism. For example:
— Split given layer(s) via TP across 4 GPUs
— Split the model into 4 pipeline stages
— The above TP+PP combination compose a single DP unit

— Use 2 DP units with the above configuration for 32-GPU parallelism
e Question: Given 4 nodes with 8 GPUs each, where should you place the node boundaries?

e Answer: Keep as many TP partitions as possible within a
node

— Each model replica requires TP*PP = 16 GPUs

— Two pipeline stages per node

— Pipeline-parallel pt2pt comms across nodes, no inter-node TP

e Between pipeline stages 2 and 3 out of the total 4

— ZeRO-1 across nodes as well, but same comms volume as DP and
easy to overlap with compute

|9)jeed B1RQ OYaZ

] Y
Pipeline Parallel




Lab 2 — Out-of-core DNN Training using DeepSpeed

e QObjectives
— Test an out-of-core DNN on a single node (BERT 2.5B)

— Train the out-of-core DNN on two node using DeepSpeed

e Tasks

— Task 1: Single GPU
— Task 2: Multi-GPU




Lab 2 — Task 1: Test a 2.5B Bert DNN on a single GPU

$ cd /opt/tutorials/hoti-hidl-tutorial/lab2
$ srun -N 1 -p bdw-v100 train-bert-single.sh

+ /opt/tutorials/hidl-env/miniconda3/envs/deepspeed/bin/deepspeed -H /tmp/hosts_425272 /opt/tutorials/hidl-
env/deepspeed_benchmarks/train_bert.py --checkpoint_dir /tmp/checks --num_layers 192 --ff _dim 4096 --h_dim 1024 --batch_size
1 --num_iterations 10

Traceback (most recent call last):

File "/opt/tutorials/hidl-env/deepspeed benchmarks/train bert.py", line 791, in <module>
fire.Fire(train)

File "/opt/tutorials/hidl-env/miniconda3/envs/deepspeed/lib/python3.10/site-packages/fire/core.py", line 141, in Fire
component trace = Fire(component, args, parsed flag args, context, name)

File "/opt/tutorials/hidl-env/miniconda3/envs/deepspeed/lib/python3.10/site-packages/fire/core.py"”, line 466, in Fire
component, remaining args = CallAndUpdateTrace (

File "/opt/tutorials/hidl-env/miniconda3/envs/deepspeed/lib/python3.10/site-packages/fire/core.py"”, line 681, in CallAndUpdateTrace
component = fn(*varargs, **kwargs)

File "/opt/tutorials/hidl-env/deepspeed benchmarks/train bert.py", line 759, in train
optimizer.step ()

File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/optimizer.py", line 391, in wrapper
out = func(*args, **kwargs)

File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/optimizer.py", line 76, in use grad
ret = func(self, *args, **kwargs)

File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/adam.py", line 159, in step

has complex = self. init group(
File "/opt/tutorials/hidl-env/labs/lab4/pytorch/torch/optim/adam.py", line 115, in _init group
state['exp avg sq'] = torch.zeros like(p, memory format=torch.preserve format)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB. GPU




Lab 2 — Task 2: Run 2.5B Bert DNN on two GPUs

$ cd /opt/tutorials/hoti-hidl-tutorial/lab2
$ srun -N 2 --reservation=dltutorial run bert.sh

+ /opt/tutorials/hidl-env/miniconda3/envs/deepspeed/bin/deepspeed -H /tmp/hosts_425274 /opt/tutorials/hidl-
env/deepspeed_benchmarks/train_bert_ds.py --checkpoint_dir /opt/tutorials/hidl-env/checks --num_layers 192 --ff_dim 4096 --

h_dim 1024 --batch_size 1 --num_iterations 10

gpu0l: [2022-12-31 22:50:20,415] [INFO] [timer.py:197:stop] 0/4,
MemAllocated=18.42GB, MaxMemAllocated=25.43GB

gpull: [2022-12-31 22:50:21,470] [INFO] [stage 1 and 2.py:1765:step]
reducing to 134217728.0

gpu0l: [2022-12-31 22:50:21,472] [INFO] [timer.py:197:stop] 0/5,
MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpul0l: [2022-12-31 22:50:22,518] [INFO] [stage 1 and 2.py:1765:step]
reducing to 67108864.0

gpu0l: [2022-12-31 22:50:22,520] [INFO] [timer.py:197:stop] 0/6,

MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpull: [2022-12-31 22:50:23,557] [INFO] [stage 1 and 2.py:1765:step]
reducing to 33554432.0
gpulOl: [2022-12-31 22:50:23,558] [INFO] [timer.py:197:stop] 0/7,

MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpull: [2022-12-31 22:50:24,577] [INFO] [stage 1 and 2.py:1765:step]
reducing to 16777216.0

gpu0l: [2022-12-31 22:50:24,579] [INFO] [timer.py:197:stop] 0/8,
MemAllocated=18.42GB, MaxMemAllocated=25.44GB

gpull: [2022-12-31 22:50:25,644] [INFO] [stage 1 and 2.py:1765:step]
reducing to 8388608.0

gpu0l: [2022-12-31 22:50:25,645] [INFO] [timer.py:197:stop] 0/9,

MaxMemAllocated=25.44GB

MemAllocated=18.42GRB,

RunningAvgSamplesPerSec=1

[deepspeed] OVERFLOW!

RunningAvgSamplesPerSec=1.

[deepspeed] OVERFLOW!

RunningAvgSamplesPerSec=1.

[deepspeed] OVERFLOW!

RunningAvgSamplesPerSec=1.

[deepspeed] OVERFLOW!

RunningAvgSamplesPerSec=1.

[deepspeed] OVERFLOW!

RunningAvgSamplesPerSec=1.

.989045629615473,

CurrSamplesPerSec=1.9197348998894654,

Rank 0 Skipping step. Attempted loss scale: 268435456.0,

9581760061302556, CurrSamplesPerSec=1.8992247658347254,

Rank 0 Skipping step. Attempted loss scale: 134217728.0,

9472242517233995, CurrSamplesPerSec=1.9150918757408228,

Rank 0 Skipping step. Attempted loss scale: 67108864.0,

9440531488041186, CurrSamplesPerSec=1.9314713530693848,
Rank 0 Skipping step. Attempted loss scale: 33554432.0,
9473977612894298, CurrSamplesPerSec=1.9642949469669437,
Rank 0 Skipping step. Attempted loss scale: 16777216.0,

9380716205436017, CurrSamplesPerSec=1.883938232505326,
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What is Deep Learning Inference?

Deep learning Training & Inference

TRAINING VS INFERENCE

forward “car”

.

?

Large N ‘\/\j/ e T backward  error

Phase Sensitivity
Training Model-learning Throughput
Inference User-facing Latency
Inference: Latency-sensitive

— Final Phase of Deep Learning

— The closest end to users
Smaller batch size in the workflow
User-end requests arrive randomly
No need for model weights update

Response time is the most crucial
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Courtesy: https://developer.nvidia.com/blog/nvidia-deep-learning-inference-platform-
performance-study/; https://www.exxactcorp.com/blog/HPC/discover-the-difference-between-

deep-learning-training-and-inference
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Inference Scenarios

1. Online vs. batch inference:

— Online Inference: used when real-time predictions are required

e Latency: Lower latency is critical for real-time applications, and online inference focuses on minimizing the
time it takes to process individual instances.

— Batch Inference: employed for processing large volumes of data at once

e Throughput: Batch inference focuses on maximizing throughput by processing many instances
simultaneously, rather than prioritizing latency.

2. Edge vs. HPC/Cloud inference:

— Inference on the Edge: limited resources and require low-latency responses

e Latency: Low-latency responses are crucial in edge scenarios, as real-time predictions may be necessary for
applications like autonomous vehicles or 10T devices.

— Cloud Inference: more resources and better scalability

* Throughput: HPC/cloud systems can scale horizontally and vertically, allowing for increased throughput
when processing large volumes of data.




Quantization for DNN Inference on the Edge

e (Quantization uses FP16, INT16, and INT8 datatypes instead of FP32 to represent the weights
and activations of DNN models.

e Using smaller datatypes to represent a model can lead to reduced memory footprint, smaller
latency, and improved throughput.

e The quantization approach is especially beneficial for edge devices with limited memory and

compute resources.
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Inference performance of OpenVINO and PyTorch using MLPerf Edge on the DenseNet-121 and VGG-19 models

[1]. Ahn, Hyunho, Tian Chen, Nawras Alnaasan, Aamir Shafi, Mustafa Abduljabbar, and Hari Subramoni. "Performance Characterization of using Quantization for DNN
Inference on Edge Devices: Extended Version." 7th IEEE International Conference on Fog and Edge Computing
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Flover: Efficient parallel inference on LLMs with temporal fusionu

e When serving multiple requests, how to deliver both low-latency and high-throughput?

e For generative models such as GPT, LLaMA, the generation is sequential and regulated by 'for' loop.

— For multiple requests that arrive at different time, how do we schedule the inference?

+0 ms +230ms  +470ms +500ms +510 ms
(a) I e ¢ ¢ —m 3P Time
Dynamic Batching | request#0 | | request#1 | | request#? | "'"""'"""m? """"""""

\ \ Waiting 1 IDynamlc Bmchlnglﬂ I Inference for 300 iter. Dulpm #0-2

{h} Create Model Instance #0 —){ Inference for 300 iter. I Cutput #0
Concurrent Instances Create Model Instance #1 —>]Inference for 300 itr.
Create Model Instance #2 —)AI Inference for 300 iter.
Create Model Instance #3 —Fl Inference for 300 iter. |—>
(c)
Proposed | request#0 | | request#t | [ request#2 | request #3
: 3 h] |
Temporal Fusion | Main inference stream | Total iter for 4 requests = e.g. 540

Token parallel inference |J_”J_"J_I IJ_I
Output #0 | [ Output #1 || Output #2 | | Output #3

e We leverage the temporal property in generative model to smartly batch token generation.

— Only maintain one persistent inference instance for serving any incoming requests with no delay.

— Efficient memory reordering strategy to assure requests’ buffer continuity, avoiding internal fragments.

[1] Yao, Jinghan, Nawras Alnaasan, Tian Chen, Aamir Shafi, and Hari Subramoni. "Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference." In Proceeding of HiPC 23
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Flover: Efficient parallel inference on LLMs with temporal fusion

e When requests evicted, their buffer need to be properly managed.

— When early arrived requests finished

— When request gets an EOS token

GPU global memory space

Iter 458
rr |request 4| |request 5| [request 6| |request 7| |request 9| request 10|
| I |
® . )
buffer_offset buffer_size
Requests 5, 7 finish
ln!-q uest ﬂ] [request 1‘.'I]
| | | | | | | |
4
buffer_ocffzet
w/io, memory shuffle
(equests) faauest 0
| | | | | SIS | | |
1 J
buffer_offsst bu.tfa;_si:u-
w. memory shuffle
¥ shuffle =
request 41 [request I-] lrequest 4] lreq uest !] [request 1‘.‘I]
| 2 |
buffer_ofiset huuq-r_sizt

Memory Reordering

Yao, Jinghan, Nawras Alnaasan, Tian Chen, Aamir Shafi, and Hari Subramoni. "Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference." arXiv preprint arXiv:2305.13484 (2023).
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Open Issues and Challenges

e Convergence of ML/DL and HPC
e ML/DL Benchmarks and Thoughts on Standardization

e Handling Trillion Parameter Models for Training and
Inference

e Energy-aware and Fault-Tolerant DL training

e Low latency and high-throughput inference on a
range of devices
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Convergence of ML/DL and HPC

e |s Machine Learning/Deep Learning and Data Science an HPC Problem?
— Distributed Model/DNN Training is definitely an HPC problem

— Inference — not yet an HPC problem

— Support for Machine Learning frameworks on HPC systems is improving (yet lagging)

e Why HPC can help?

— Decades of research for communication models and performance optimizations

— MPI, PGAS, and other communication runtimes can help for “data-parallel” training

e Some of the needs for ML/DL frameworks are an exact match

— Compute intensive problem

e Some needs are new for distributed/parallel communication runtimes

— Large Message Communication

— CUDA-Aware Communication




ML/DL Benchmarks and Thoughts on Standardization

e Can we have a standardized interface?

— Are we there yet?

— Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)

e What can be a good starting point?
e Will it come from the HPC community or the DL community?

e Can there be a collaboration across communities?

e \What about standard benchmarks? Is there a need?

— State-of-the-art
e HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk

e Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks

e DAWN Bench — https://dawn.cs.stanford.edu/benchmark/

e MLPerf — https://www.mlperf.org -- Latest and Widely Promoted now!
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Handling Trillion Parameter Models for Training and
Inference

e The community has crossed models with Billion Parameters

e Already thinking about Models with Trillion Parameters

— Trillion Parameter Consortium (https://www.anl.gov/cels/trillion-parameter-

consortium)

e Model Training and Inference with Trillion Parameters will require

— Extremely Large-scale datacenters (~1 million GPUs)

— Accelerators and/or Memory subsystems to hold the model during training
and inference

— Next-generation of architectures (CPUs, GPUs, Interconnects) and algorithms

for training and inference
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Energy-aware and Fault-Tolerant DL Training

Training Models with Billion Parameters requires
— Extremely-large data centers with hundred thousands of GPUs

— Months of training time
Consumes significant energy
GPUs go through failures

Significant focus on

— New generation of hardware and software for reducing energy consumption

— Newer Checkpointing and fault-tolerant schemes




Low latency and high-throughput inference on a range
of devices

e Wide range of needs for inference

— Multiple disciplines (engineering, medicine, agriculture, ...)

— Range of edge devices (laptops, smart phones, drones, dedicated devices)
e Require inference schemes with

— Low-latency

— High-throughput

— Reduced cost

e The inference workflow pipeline involving edge devices, network, and
back-end servers need to be heavily optimized based on the needs
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Conclusion

e Exponential growth in Machine Learning/Deep Learning/Data Science
frameworks

e Provided an overview of issues, challenges, and opportunities for
designing efficient communication runtimes

— Efficient, scalable, and hierarchical designs are crucial for ML/DL/Data Science frameworks

— Co-design of communication runtimes and ML/DL/Data Science frameworks will be essential

e Worked on a set of hands-on exercises to demonstrate the complex interaction
between DL/ML middleware with the underling HPC technologies and middleware

e Need collaborative efforts to achieve the full potential
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