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• Introduction

• Why High-Performance Networking for HPC and AI?

• Communication Model and Semantics of High-Performance Networks

• Architectural Overview of High-Performance Networks

– IB, HSE, their Convergence and Features

– GPU-aware support in modern HPC networks:

• NVLink and NVSwitch Interconnect Architecture

• AMD Infinity Fabric Interconnect Architecture, UALink, & UltraEthernet

– Amazon EFA Interconnect Architecture

– Cray Slingshot Interconnect Architecture

• Overview of Emerging Smart Network Interfaces

– Collectives w/ NVIDIA SHARP, NVIDIA BlueField DPUs,  AMD Pensando Smart NICs, and Intel Columbiaville IPUs

• High-Performance Network Deployments for AI Workloads

– Cerebras and Habana-Gaudi

• Overview of Software Stacks for Commodity High-Performance Networks

• Sample Case Studies and Performance Numbers

• Hands on Exercises: IB Technologies and MPI Collectives

• Conclusions and Final Q&A

Presentation Overview
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• Growth of High-Performance Computing

– Growth in processor performance

• Chip density doubles every 18 months

– Growth in commodity networking

• Increase in speed/features + reducing cost

• Clusters: popular choice for HPC

– Scalability, Modularity and Upgradeability

Current and Next Generation Applications and 
Computing Systems
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Trends for Commodity Computing Clusters in the Top 
500 List (http://www.top500.org)
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Integrated High-End Computing Environments

Compute cluster

Meta-Data
Manager

I/O Server
Node

Meta
Data

Data
Compute

Node

Compute
Node

I/O Server
Node Data

Compute
Node

I/O Server
Node Data

Compute
Node

L
A
NLANFrontend

Storage cluster

LAN/WAN

.

.
.
.

Enterprise Multi-tier Datacenter for Visualization and Mining

Tier1 Tier3

Routers/
Servers

Switch

Database 
Server

Application 
Server

Routers/
Servers

Routers/
Servers

Application 
Server

Application 
Server

Application 
Server

Database 
Server

Database 
Server

Database 
Server

Switch Switch

Routers/
Servers

Tier2



HotI 2025/HotI32 6Network Based Computing Laboratory

Cloud Computing Environments
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Deep/Machine Learning

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-

and-deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 

https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)

– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML

– Uses Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset! 

• Based on learning data representation 

• DNN Examples: Convolutional Neural Networks, 

Recurrent Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using 

DNNs

1. Identify DL as solution to a problem

2. Determine Data Set

3. Select Deep Learning Algorithm to Use

4. Use a large data set to train an algorithm
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Courtesy: https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/  

Evolution of Language Models
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• Good System Area Networks with excellent performance (low latency, high 

bandwidth and low CPU utilization) for inter-processor communication (IPC) 

and I/O

• Good Storage Area Networks high performance I/O 

• Good WAN connectivity in addition to intra-cluster SAN/LAN connectivity 

• Quality of Service (QoS) for interactive applications

• RAS (Reliability, Availability, and Serviceability)

• With low cost

Networking and I/O Requirements



HotI 2025/HotI32 10Network Based Computing Laboratory

• Hardware components

– Processing cores and memory 

subsystem

– I/O bus or links

– Network adapters/switches

• Software components

– Communication stack

• Bottlenecks can artificially 

limit the network performance 

the user perceives

Major Components in Computing Systems
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• Ex: TCP/IP, UDP/IP

• Generic architecture for all networks

• Host processor handles almost all aspects of 

communication

– Data buffering (copies on sender and receiver)

– Data integrity (checksum)

– Routing aspects (IP routing)

• Signaling between different layers

– Hardware interrupt on packet arrival or transmission

– Software signals between different layers to handle 

protocol processing in different priority levels

Processing Bottlenecks in Traditional Protocols
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• Traditionally relied on bus-based

       technologies (last mile bottleneck)

– E.g., PCI, PCI-X

– One bit per wire

– Performance increase through:

• Increasing clock speed

• Increasing bus width

– Not scalable:

• Cross talk between bits

• Skew between wires

• Signal integrity makes it difficult to increase bus width significantly, 

especially for high clock speeds

Bottlenecks in Traditional I/O Interfaces and Networks

PCI 1990 33MHz/32bit: 1.05Gbps (shared bidirectional)

PCI-X
1998 (v1.0)

2003 (v2.0)

133MHz/64bit: 8.5Gbps (shared bidirectional)

266-533MHz/64bit: 17Gbps (shared bidirectional)
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• Network speeds saturated at around 1Gbps

– Features provided were limited

– Commodity networks were not considered 

scalable enough for very large-scale systems

Bottlenecks on Traditional Networks

Ethernet (1979 - ) 10 Mbit/sec

Fast Ethernet (1993 -) 100 Mbit/sec

Gigabit Ethernet (1995 -) 1000 Mbit /sec

ATM (1995 -) 155/622/1024 Mbit/sec

Myrinet (1993 -) 1 Gbit/sec

Fibre Channel (1994 -) 1 Gbit/sec
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• Industry Networking Standards

• InfiniBand and High-speed Ethernet were introduced into the market to 

address these bottlenecks around 2000

• InfiniBand aimed at all three bottlenecks (protocol processing, I/O bus, and 

network speed)

• Ethernet aimed at directly handling the network speed bottleneck and relying 

on complementary technologies to alleviate the protocol processing and I/O 

bus bottlenecks

Motivation for High-Performance Networks
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• Introduction

• Why High-Performance Networking for HPC and AI?

• Communication Model and Semantics of High-Performance Networks

• Architectural Overview of High-Performance Networks

– IB, HSE, their Convergence and Features

– GPU-aware support in modern HPC networks:

• NVLink and NVSwitch Interconnect Architecture

• AMD Infinity Fabric Interconnect Architecture, UALink, & UltraEthernet

– Amazon EFA Interconnect Architecture

– Cray Slingshot Interconnect Architecture

• Overview of Emerging Smart Network Interfaces

– Collectives w/ NVIDIA SHARP, NVIDIA BlueField DPUs,  AMD Pensando Smart NICs, and Intel Columbiaville IPUs

• High-Performance Network Deployments for AI Workloads

– Cerebras and Habana-Gaudi

• Overview of Software Stacks for Commodity High-Performance Networks

• Sample Case Studies and Performance Numbers

• Hands on Exercises: IB Technologies and MPI Collectives

• Conclusions and Final Q&A

Presentation Overview
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• IB Trade Association was formed with seven industry leaders (Compaq, Dell, 

HP, IBM, Intel, Microsoft, and Sun)

• Goal: To design a scalable and high performance communication and I/O 

architecture by taking an integrated view of computing, networking, and 

storage technologies

• Many other industry participated in the effort to define the IB architecture 

specification

• IB Architecture (Volume 1, Version 1.0) was released to public on Oct 24, 2000
– Several annexes released after that (RDMA_CM  - Sep’06,  iSER – Sep’06, XRC – Mar’09, RoCE – Apr’10, RoCEv2 

– Sep’14, Virtualization – Nov’16)

– Latest version 1.8, released September 2024

• http://www.infinibandta.org

IB Trade Association

http://www.infinibandta.org/
http://www.infinibandta.org/


HotI 2025/HotI32 17Network Based Computing Laboratory

• 10GE Alliance formed by several industry leaders to take the Ethernet family to the next speed step

• Goal: To achieve a scalable and high performance communication architecture while maintaining 

backward compatibility with Ethernet

• There are products and standards for 10GE, 25GE, 40GE, 50GE, 100GE, 200GE, and 400 GE

• http://www.ethernetalliance.org

• 40-Gbps (Servers) and 100-Gbps Ethernet (Backbones, Switches, Routers): IEEE 802.3 WG

• 25-Gbps Ethernet Consortium targeting 25/50Gbps (July 2014)

– http://25gethernet.org  

• Energy-efficient and power-conscious protocols

– On-the-fly link speed reduction for under-utilized links

• Ethernet Alliance Technology Forum looking forward to 2026

– http://insidehpc.com/2016/08/at-ethernet-alliance-technology-forum/

High-speed Ethernet Consortium

http://www.ethernetalliance.org/
http://www.ethernetalliance.org/
http://25gethernet.org/
http://25gethernet.org/
http://insidehpc.com/2016/08/at-ethernet-alliance-technology-forum/
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• Network speed bottlenecks

• Protocol processing bottlenecks

• I/O interface bottlenecks

Tackling Communication Bottlenecks with IB and HSE
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• Bit serial differential signaling

– Independent pairs of wires to transmit independent data (called a 

lane)

– Scalable to any number of lanes

– Easy to increase clock speed of lanes (since each lane consists only of 

a pair of wires)

• Theoretically, no perceived limit on the bandwidth

Network Bottleneck Alleviation: InfiniBand (“Infinite 
Bandwidth”) and High-speed Ethernet



HotI 2025/HotI32 20Network Based Computing Laboratory

Ethernet (1979 - ) 10 Mbit/sec

Fast Ethernet (1993 -) 100 Mbit/sec

Gigabit Ethernet (1995 -) 1000 Mbit /sec

ATM (1995 -) 155/622/1024 Mbit/sec

Myrinet (1993 -) 1 Gbit/sec

Fibre Channel (1994 -) 1 Gbit/sec

InfiniBand (2001 -) 2 Gbit/sec (1X SDR)

10-Gigabit Ethernet (2001 -) 10 Gbit/sec

InfiniBand (2003 -) 8 Gbit/sec (4X SDR)

InfiniBand (2005 -) 16 Gbit/sec (4X DDR)

24 Gbit/sec (12X SDR)

InfiniBand (2007 -) 32 Gbit/sec (4X QDR)

40-Gigabit Ethernet (2010 -) 40 Gbit/sec

InfiniBand (2011 -) 54.6 Gbit/sec (4X FDR)
InfiniBand (2012 -) 2 x 54.6 Gbit/sec (4X Dual-FDR)

25-/50-Gigabit Ethernet (2014 -) 25/50 Gbit/sec

100-Gigabit Ethernet (2015 -) 100 Gbit/sec
Omni-Path (2015 - ) 100 Gbit/sec

InfiniBand (2015 - ) 100 Gbit/sec (4X EDR)

InfiniBand (2017 - ) 200 Gbit/sec (4X HDR)
Slingshot10/11 (2021 - ) 200 Gbit/sec

Omni-Path-Express (2021 - ) 100 Gbit/sec
Google Aquila (2021 - ) 100 Gbit/sec

InfiniBand (2022 - ) 400 Gbit/sec (4X NDR)
Omni-Path-Express (2024 - ) 400 Gbit/sec (CN5000)

Network Speed Acceleration over the years

200 
times in 
the last 

24 
years!!
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• Network speed bottlenecks

• Protocol processing bottlenecks

• I/O interface bottlenecks

Tackling Communication Bottlenecks with IB and HSE
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• Intelligent Network Interface Cards

• Support entire protocol processing completely in hardware 

(hardware protocol offload engines)

• Provide a rich communication interface to applications

– User-level communication capability

– Gets rid of intermediate data buffering requirements

• No software signaling between communication layers

– All layers are implemented on a dedicated hardware unit, and not on a 

shared host CPU

Capabilities of High-Performance Networks
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• Network speed bottlenecks

• Protocol processing bottlenecks

• I/O interface bottlenecks

Tackling Communication Bottlenecks with IB and HSE
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• InfiniBand initially intended to replace I/O bus technologies with networking-

like technology

– That is, bit serial differential signaling

– With enhancements in I/O technologies that use a similar architecture 

(HyperTransport, PCI Express), this has become mostly irrelevant now

• Both IB and HSE today come as network adapters that plug into existing I/O 

technologies

Interplay with I/O Technologies
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• Recent trends in I/O interfaces show that they are nearly matching head-to-

head with network speeds (though they still lag a little bit)

Trends in I/O Interfaces with Servers

PCI 1990
33MHz/32bit: 1.05Gbps

(shared bidirectional)

PCI-X
1998 (v1.0)

2003 (v2.0)

133MHz/64bit: 8.5Gbps

(shared bidirectional)

266-533MHz/64bit: 17Gbps

(shared bidirectional)

AMD 
HyperTransport 

(HT)

2001 (v1.0), 2004 
(v2.0)

2006 (v3.0), 2008 
(v3.1)

102.4Gbps (v1.0), 179.2Gbps (v2.0)

332.8Gbps (v3.0), 409.6Gbps (v3.1)

(32 lanes)

Intel QuickPath 
Interconnect 

(QPI)
2009 153.6-204.8Gbps (20 lanes)

* https://insidehpc.com/2018/06/implementing-pcie-gen-4-expansion/

+ https://insidehpc.com/2019/08/video-pci-express-6-0-specification-to-reach-64-gigatransfers-sec/

https://arstechnica.com/gadgets/2022/06/months-after-finalizing-pcie-6-0-pci-sig-looks-to-double-speeds-again-with-pcie-7-0/
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• Cache Coherence Interconnect for Accelerators  (CCIX)

– https://www.ccixconsortium.com/

• NVLink

– http://www.nvidia.com/object/nvlink.html

• CAPI/OpenCAPI

– http://opencapi.org/

• GenZ

– http://genzconsortium.org/

Upcoming I/O Interface Architectures

https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
http://opencapi.org/
http://opencapi.org/
http://genzconsortium.org/
http://genzconsortium.org/
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• Open industry standard

• Provides a cache coherent interconnect between

– CPUs

– Accelerators, like GPUs

– Smart I/O devices, like DPUs, and

– Various flavors of DDR4/DDR5 and persistent memories

• Allows the CPU to work on the same memory regions as the connected 

devices

• Improving performance and power efficiency while reducing software 

complexity and data movement

Compute eXpress Link (CXL)

Courtesy: Toms Hardware & CXL Consortium
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CXL 3.1 Spec Feature Comparison
Courtesy: Toms Hardware & CXL Consortium
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• Introduction

• Why High-Performance Networking for HPC and AI?

• Communication Model and Semantics of High-Performance Networks

• Architectural Overview of High-Performance Networks

– IB, HSE, their Convergence and Features

– GPU-aware support in modern HPC networks:

• NVLink and NVSwitch Interconnect Architecture

• AMD Infinity Fabric Interconnect Architecture, UALink, & UltraEthernet

– Amazon EFA Interconnect Architecture

– Cray Slingshot Interconnect Architecture

• Overview of Emerging Smart Network Interfaces

– NVIDIA BlueField DPUs,  AMD Pensando Smart NICs, and Intel Columbiaville IPUs

• High-Performance Network Deployments for AI Workloads

– Cerebras and Habana-Gaudi

• Overview of Software Stacks for Commodity High-Performance Networks

• Sample Case Studies and Performance Numbers

• Hands on Exercises: IB Technologies and MPI Collectives

• Conclusions and Final Q&A

Presentation Overview
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Two-sided Communication Model
HCA HCA HCAP 1 P 2 P 3

HCA Send

Data to P2

HCA Send

Data to P2

Poll  HCA

Recv from P3

Recv from P1

Poll  HCA

Poll  HCA

No Data

Recv  Data from P3

Recv  Data from P1

Post Send Buffer

Post Send Buffer

Send to P2

Send to P2

Recv from P3

Recv from P1 Post Recv

Buffer

Post Recv

Buffer
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One-sided Communication Model
HCA HCA HCAP 1 P 2 P 3

Write to P2

Write to P3

Write Data from P1

Write data from P2

Post to HCA

Post to HCA

Buffer at P2 Buffer at P3

Global Region Creation
(Buffer Info Exchanged)

Buffer at P1

HCA Write

Data to P2

HCA Write

Data to P3
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1. Registration Request 

• Send virtual address and length

2. Kernel handles virtual->physical 

mapping and pins region into physical 

memory

• Process cannot map memory that it 

does not own (security !)

3. HCA caches the virtual to physical 

mapping and issues a handle

• Includes an l_key and r_key

4. Handle is returned to application

Memory Registration

Before we do any communication:
All memory used for communication must 

be registered

1

3

4

Process

Kernel

HCA/RNIC

2
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• To send or receive data the l_key must 

be provided to the HCA

• HCA verifies access to local memory

• For RDMA, initiator must have the 

r_key for the remote virtual address

• Possibly exchanged with a send/recv

• r_key is not encrypted in IB

• Kernel bypass grants improved latency 

over prior transfer mechanisms

Memory Protection

HCA/NIC

Kernel

Process

l_key

r_key is needed for RDMA operations

For security, keys are required for all 
operations that touch buffers

Critical to Latency Reduction

mailto:panda@cse.ohio-state.edu
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• Each QP has two queues

– Send Queue (SQ)

– Receive Queue (RQ)

– Work requests are queued to the QP (WQEs: 

“Wookies”)

• QP to be linked to a Complete Queue 

(CQ)

– Gives notification of operation completion 

from QPs

– Completed WQEs are placed in the CQ with 

additional information (CQEs: “Cookies”)

Queue Pair Model

InfiniBand Device

CQQP
Send Recv

WQEs CQEs
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Communication in the Channel Semantics
(Send/Receive Model)

InfiniBand Device

Memory Memory

InfiniBand Device

CQ
QP

Send Recv

Memory
Segment

Send WQE contains information about the send 
buffer (multiple non-contiguous segments)

Processor Processor

CQ
QP

Send Recv

Memory
Segment

Receive WQE contains information on the receive buffer 
(multiple non-contiguous segments); Incoming messages 
have to be matched to a receive WQE to know where to 

place

Hardware ACK

Memory
Segment

Memory
Segment

Memory
Segment

Processor is involved only to:

1. Post receive WQE

2. Post send WQE

3. Pull out completed CQEs from the CQ
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Communication in the Memory Semantics (RDMA 
Model)

InfiniBand Device

Memory Memory

InfiniBand Device

CQ
QP

Send Recv

Memory
Segment

Send WQE contains information about the send 
buffer (multiple segments) and the receive buffer 

(single segment)

Processor Processor

CQ
QP

Send Recv

Memory
Segment

Hardware ACK

Memory
Segment

Memory
Segment

Initiator processor is involved only to:

1. Post send WQE

2. Pull out completed CQE from the send CQ

No involvement from the target processor
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• Introduction

• Why High-Performance Networking for HPC and AI?

• Communication Model and Semantics of High-Performance Networks

• Architectural Overview of High-Performance Networks

– IB, HSE, their Convergence and Features

– GPU-aware support in modern HPC networks:

• NVLink and NVSwitch Interconnect Architecture

• AMD Infinity Fabric Interconnect Architecture, UALink, & UltraEthernet

– Amazon EFA Interconnect Architecture

– Cray Slingshot Interconnect Architecture

• Overview of Emerging Smart Network Interfaces

– NVIDIA BlueField DPUs,  AMD Pensando Smart NICs, and Intel Columbiaville IPUs

• High-Performance Network Deployments for AI Workloads

– Cerebras and Habana

• Overview of Software Stacks for Commodity High-Performance Networks

• Sample Case Studies and Performance Numbers

• Hands on Exercises: IB Technologies and MPI Collectives

• Conclusions and Final Q&A

Presentation Overview
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• InfiniBand

– Architecture and Basic Hardware Components

– Hardware Protocol Offload

• High-speed Ethernet Family

– Internet Wide Area RDMA Protocol (iWARP)

• InfiniBand/Ethernet Convergence Technologies

– (InfiniBand) RDMA over Converged (Enhanced) Ethernet (RoCE)

IB, HSE and their Convergence
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Comparing InfiniBand with Traditional Networking Stack

Application Layer MPI, PGAS, File Systems

Transport Layer
OpenFabrics Verbs

RC (reliable),  UD (unreliable)

Link Layer Flow-control, Error Detection

Physical Layer

InfiniBand

Copper or Optical

HTTP, FTP,  MPI, 

File Systems

Routing

Physical Layer

Link Layer

Network Layer

Transport Layer

Application Layer

Traditional Ethernet

Sockets Interface

TCP, UDP

Flow-control and

Error Detection

Copper,  Optical or Wireless

Network Layer Routing

OpenSM (management tool)

DNS management tools
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Kernel 

Space

TCP/IP Stack and IPoIB
Application / 
Middleware

Ethernet 

Adapter

Ethernet 
Switch

Ethernet 
Driver

TCP/IP

1/10/25/40/
50/100 GigE

InfiniBand 
Adapter

InfiniBand 
Switch

IPoIB

IPoIB

Sockets

Application / 
Middleware Interface

Protocol

Adapter

Switch
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Kernel 

Space

TCP/IP, IPoIB and Native IB Verbs
Application / 
Middleware

Verbs

Ethernet 

Adapter

Ethernet 
Switch

Ethernet 
Driver

TCP/IP

InfiniBand 
Adapter

InfiniBand 
Switch

IPoIB

IPoIB

InfiniBand 
Switch

InfiniBand 
Adapter

RDMA

User 
Space

IB Native

Sockets

Application / 
Middleware Interface

Protocol

Adapter

Switch

1/10/25/40/
50/100 GigE
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• InfiniBand

– Architecture and Basic Hardware Components

– Hardware Protocol Offload

• High-speed Ethernet Family

– Internet Wide Area RDMA Protocol (iWARP)

• InfiniBand/Ethernet Convergence Technologies

– (InfiniBand) RDMA over Converged (Enhanced) Ethernet (RoCE)

IB, HSE and their Convergence
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Components: Channel Adapters, Switches/Routers, 
and Links

C

Port

V
L

V
L

V
L

…
Port

V
L

V
L

V
L

…
Port

V
L

V
L

V
L

…
…

DMA

Memory

Q
P

Q
P

Q
P

Q
P

…

MTP

SMA

Transport

Channel Adapter

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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• InfiniBand

– Architecture and Basic Hardware Components

– Hardware Protocol Offload

• High-speed Ethernet Family

– Internet Wide Area RDMA Protocol (iWARP)

• InfiniBand/Ethernet Convergence Technologies

– (InfiniBand) RDMA over Converged (Enhanced) Ethernet (RoCE)

IB, HSE and their Convergence
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Hardware Protocol Offload

Complete 
Hardware

Implementations
Exist
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• Buffering and Flow Control

• Virtual Lanes, Service Levels, and QoS

• Switching and Multicast

Link/Network Layer Capabilities
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• Virtual Lanes (VL)

– Multiple (between 2 and 16) virtual links within same 

physical link

• 0 – default data VL; 15 – VL for management traffic

– Separate buffers and flow control

– Avoids Head-of-Line Blocking

• Service Level (SL):

– Packets may operate at one of 16, user defined SLs

Virtual Lanes, Service Levels, and QoS

(Courtesy: Mellanox Technologies)

Routers, Switches 
VPN’s, DSLAMs  

Storage Area Network
RAID, NAS, Backup

IPC, Load Balancing, Web Caches, ASP 

InfiniBand 
Network

Virtual Lanes

Servers

Fabric

ServersServers

IP Network

InfiniBand
Fabric

Traffic Segregation

• SL to VL mapping:

– SL determines which VL on the next link is to be used

– Each port (switches, routers, end nodes) has a SL to VL 

mapping table configured by the subnet management 

• Partitions:

– Fabric administration (through Subnet Manager) may assign 

specific SLs to different partitions to isolate traffic flows
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• Each port has one or more associated LIDs (Local Identifiers)

– Switches look up which port to forward a packet to based on its destination LID (DLID)

– This information is maintained at the switch

• For multicast packets, the switch needs to maintain multiple output ports to 

forward the packet to

– Packet is replicated to each appropriate output port

– Ensures at-most once delivery & loop-free forwarding

– There is an interface for a group management protocol

• Create, join/leave, prune, delete group

Switching (Layer-2 Routing) and Multicast
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• Basic unit of switching is a crossbar

– Current InfiniBand products use either 24-port (DDR), 36-port (QDR and FDR), and 

48-port (EDR) crossbars

• Switches available in the market are typically collections of crossbars within a 

single cabinet

• Do not confuse “non-blocking switches” with “crossbars”

– Crossbars provide all-to-all connectivity to all connected nodes

• For any random node pair selection, all communication is non-blocking

– Non-blocking switches provide a fat-tree of many crossbars

• For any random node pair selection, there exists a switch configuration such that 

communication is non-blocking

• If the communication pattern changes, the same switch configuration might no longer 

provide fully non-blocking communication

Switch Complex



HotI 2025/HotI32 50Network Based Computing Laboratory

• Someone has to setup the forwarding tables and give 

every port an LID

– “Subnet Manager” does this work

• Different routing algorithms give different paths

IB Switching/Routing: An Example

Leaf Blocks

Spine Blocks

P1P2 DLID Out-Port

2 1

4 4

Forwarding TableLID: 2
LID: 4

1 2 3 4

An Example IB Switch Block Diagram (Mellanox 144-Port)
Switching: IB supports 

Virtual Cut Through (VCT)

Routing: Unspecified by IB SPEC

Up*/Down*, Shift are popular routing 

engines supported by OFED

• Fat-Tree is a popular topology for 

IB Cluster

– Different over-subscription ratio 

may be used

• Other topologies

– 3D Torus (Sandia Red Sky, SDSC 

Gordon) and SGI Altix (Hypercube)

– 10D Hypercube (NASA Pleiades)
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IB Multicast Example

Active 
Links

Compute 
Node

Switch

Subnet 
Manager

Multicast Join

Multicast 
Setup

Multicast Join
Multicast 

Setup
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Hardware Protocol Offload

Complete 
Hardware

Implementations
Exist
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IB Transport Types and Associated Trade-offs
Attribute Reliable

Connection
Reliable

Datagram
Dynamic 

Connected
eXtended
Reliable

Connection

Unreliable
Connection

Unreliable
Datagram

Raw
Datagram

Scalability
(M processes, N nodes)

M2N QPs 
per HCA

M QPs 
per HCA

M QPs 
per HCA

MN QPs 
per HCA

M2N QPs 
per HCA

M QPs 
per HCA

1 QP 
per HCA

R
el

ia
b

ili
ty

Corrupt data 
detected Yes

Data Delivery 
Guarantee Data delivered exactly once No guarantees

Data Order 
Guarantees Per connection

One source to 
multiple 

destinations
Per connection Per connection

Unordered, 
duplicate data 

detected
No No

Data Loss 
Detected

Yes No No

Error Recovery

Errors (retransmissions, alternate path, etc.) handled by transport layer. Client only involved 
in handling fatal errors (links broken, protection violation, etc.)

Packets with errors 
and sequence 

errors are reported 
to responder

None None
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• InfiniBand

– Architecture and Basic Hardware Components

– Hardware Protocol Offload

• High-speed Ethernet Family

– Internet Wide Area RDMA Protocol (iWARP)

• InfiniBand/Ethernet Convergence Technologies

– (InfiniBand) RDMA over Converged (Enhanced) Ethernet (RoCE)

IB, HSE and their Convergence
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IB and 10/40GE RDMA Models: Commonalities and 
Differences

Features IB iWARP/HSE

Hardware Acceleration Supported Supported

RDMA Supported Supported

Atomic Operations Supported Not supported

Multicast Supported Supported

Congestion Control Supported Supported

Data Placement Ordered Out-of-order

Data Rate-control Static and Coarse-grained Dynamic and Fine-grained

QoS Prioritization
Prioritization and

Fixed Bandwidth QoS

Multipathing Using DLIDs Using VLANs
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Kernel 

Space

iWARP and TOE
Application / 
Middleware

Verbs

Ethernet 

Adapter

Ethernet 
Switch

Ethernet 
Driver

TCP/IP

InfiniBand 
Adapter

InfiniBand 
Switch

IPoIB

IPoIB

iWARP 
Adapter

Ethernet 
Switch

TCP/IP

User 
Space

iWARP

InfiniBand 
Switch

InfiniBand 
Adapter

RDMA

User 
Space

IB Native

Sockets

Application / 
Middleware Interface

Protocol

Adapter

Switch

1/10/25/40/
50/100 GigE
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RDMA over Converged Enhanced Ethernet (RoCE)

IB Verbs

Application

H
ar

d
w

ar
e

RoCE

IB Verbs

Application

RoCE v2

InfiniBand  
Link Layer

IB Network

IB Transport

IB Verbs

Application

InfiniBand

Ethernet Link 
Layer

IB Network

IB Transport

Ethernet Link 
Layer

UDP / IP

IB Transport

• Takes advantage of IB and Ethernet

– Software written with IB-Verbs

– Link layer is Converged (Enhanced) Ethernet (CE)

– 100Gb/s support from latest EDR and ConnectX-
3 Pro adapters

• Pros: IB Vs RoCE

– Works natively in Ethernet environments 
• Entire Ethernet management ecosystem is available

– Has all the benefits of IB verbs

– Link layer is very similar to the link layer of 
native IB, so there are no missing features

• RoCE v2: Additional Benefits over RoCE
– Traditional Network Management Tools Apply

– ACLs (Metering, Accounting, Firewalling)

– GMP Snooping for Optimized Multicast 

– Network Monitoring Tools
Courtesy: OFED, Mellanox

Network Stack Comparison

Packet Header Comparison

ETH
L2 Hdr

Et
h

e
rt

yp
e

IB GRH
L3 Hdr

IB BTH+
L4 Hdr

R
o

C
E

ETH
L2 Hdr

Et
h

e
rt

yp
e

IP Hdr
L3 Hdr

IB BTH+
L4 Hdr

P
ro

to
 #

R
o

C
E 

v2 UDP
Hdr P

o
rt

 #
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Kernel 

Space

RDMA over Converged Ethernet (RoCE)
Application / 
Middleware

Verbs

Ethernet 

Adapter

Ethernet 
Switch

Ethernet 
Driver

TCP/IP

InfiniBand 
Adapter

InfiniBand 
Switch

IPoIB

IPoIB

iWARP 
Adapter

Ethernet 
Switch

TCP/IP

User 
Space

iWARP

RoCE
Adapter

Ethernet 
Switch

RDMA

User 
Space

RoCE

InfiniBand 
Switch

InfiniBand 
Adapter

RDMA

User 
Space

IB Native

Sockets

Application / 
Middleware Interface

Protocol

Adapter

Switch

1/10/25/40/
50/100 GigE
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• Introduction

• Why High-Performance Networking for HPC and AI?

• Communication Model and Semantics of High-Performance Networks

• Architectural Overview of High-Performance Networks

– IB, HSE, their Convergence and Features

– GPU-aware support in modern HPC networks:

• NVLink and NVSwitch Interconnect Architecture

• AMD Infinity Fabric Interconnect Architecture, UALink, & UltraEthernet

– Amazon EFA Interconnect Architecture

– Cray Slingshot Interconnect Architecture

• Overview of Emerging Smart Network Interfaces

– NVIDIA BlueField DPUs,  AMD Pensando Smart NICs, and Intel Columbiaville IPUs

• High-Performance Network Deployments for AI Workloads

– Cerebras and Habana

• Overview of Software Stacks for Commodity High-Performance Networks

• Sample Case Studies and Performance Numbers

• Hands on Exercises: IB Technologies and MPI Collectives

• Conclusions and Final Q&A

Presentation Overview
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• Fastest possible communication between GPU and 

other PCI-E devices

• Network adapter can directly read/write data 

from/to GPU device memory

• Avoids copies through the host

• Allows for better asynchronous  communication

• Project done jointly between OSU, Mellanox, and 

NVIDIA during 2011-15. (ISC ‘11 paper on CUDA-

Aware MPI)

• Very widely used in current days HPC and AI 

middleware currently for all GPU-based systems 

(NVIDIA, AMD, and Intel)  with different 

interconnects (InfiniBand, Slingshot, Omni-Path, 

ROCE, etc.) 

GPU-Direct RDMA

InfiniBand

GPU

GPU 
Memor

y

CPU

Chip 
set

System

Memory
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At Sender:

  

At Receiver:

    MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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NVIDIA Volta V100 GPU
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10x
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1.85us
11X



HotI 2025/HotI32 63Network Based Computing Laboratory

• High-performance interconnect for emerging dense GPU systems

– Allows Load-Store operations between all GPUs

NVLink and NVLink2

Courtesy: NVIDIA
NVLink Performance Trends

Second 
Generation

Third 
Generation

Fourth 
Generation

Fifth 
Generation

NVLink bandwidth 
per GPU

300GB/s 600GB/s 900GB/s 1,800GB/s

Maximum Number 
of Links per GPU

6 12 18 18

Supported NVIDIA 
Architectures

NVIDIA 
Volta  

architecture

NVIDIA 
Ampere 

architecture

NVIDIA 
Hopper  

architecture

NVIDIA 
Blackwell 

architectur
e
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NVSwitch Topology

Courtesy: http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf

Baseboard #1

300 GB/s GPU-

GPU with single

NVSwitch 

traversal

Baseboard #2

300 GB/s GPU-

GPU with single

NVSwitch 

traversal

Inter Baseboard

Bi-section Bandwidth

2.4 TB/s (48 links at 25 GB/s 

in each direction)

Two NVSwitch traversals
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• NVIDIA Collective Communication Library (NCCL)

• Main Motivation: Deep Learning workloads

• NCCL1– efficient dense-GPU communication within the node

• NCCL2– multiple DGX systems connected to each other with InfiniBand systems

NCCL Communication Library

Courtesy: https://developer.nvidia.com/nccl 

https://developer.nvidia.com/nccl
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Courtesy: https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/ 

Scaling Large Language Models

Weak scaling performance for GPT models 
ranging from 1 billion to 1 trillion parameters

Setup:

• 3D Parallelism with Megatron-LM

• DGX system with 8 NVIDIA 80-GB A100 

per node connected via NVLink.

• 3072 A100 GPUs (384 DGX nodes) 

• 200Gbps HDR InfiniBand interconnect 

between nodes.

https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/
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AMD Infinity Fabric

Infinity fabric

Courtesy: https://www.amd.com/en/technologies/cdna2

• A cache coherent interconnect data fabric

• Used within/across chiplets on CPUs as well as 

to provide a high-speed fabric between GPUs

• Up to 145GB/s DRAM bandwidth/socket 

• Up to 400GB/s bandwidth between Graphical 

computing dies (GCDs) on MI250/MI250X

• Maintains cache coherence between CPUs and 

GPUs when using 3rd generation AMD EPYC 

processors

Die to Die interconnect on CPUs

Courtesy: AMD
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• ROCm Collective Communication Library (RCCL) – (pronounced “Rickel”)

• Uses the same C API as NCCL

• Intra-node communication support

– PCIe and xGMI high-speed interconnects 

– InfiniBand, RoCE, and TCP/IP for inter-node communication.

• Inter-node communication support

– InfiniBand, RoCE, and TCP/IP

• Useful for multi-GPU computing of workloads 

– Deep Neural training, Weather Forecasting, Bitcoin Mining

RCCL Communication Library

Courtesy :

https://www.amd.com/system/files/documents/multi-gpu-6.pdf

https://rocm.docs.amd.com/projects/rccl/en/develop/
Multi-GPU computing use cases

https://www.amd.com/system/files/documents/multi-gpu-6.pdf
https://www.amd.com/system/files/documents/multi-gpu-6.pdf
https://www.amd.com/system/files/documents/multi-gpu-6.pdf
https://www.amd.com/system/files/documents/multi-gpu-6.pdf
https://www.amd.com/system/files/documents/multi-gpu-6.pdf
https://rocm.docs.amd.com/projects/rccl/en/develop/
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• Open Standard for AI Accelerator-to-

Accelerator Communication

– Abstract the notion of Accelerator to allow for

easy plug-and-play alongside interconnects such as

CXL, PCIe, XGMI, AMD InfinityFabric, etc.

• Focus on direct load, store, atomic ops between accelerators, connected via 

an “UltraLink Switch”

– Low-latency/high-bandwidth fabric

– 100s of accelerators supported within a pod

• Version 1.0 of the standard is available now! https://ualinkconsortium.org/ 

Ultra-Accelerator Link Consortium (UALink)

Courtesy: 

https://ualinkconsortium.org 

https://ualinkconsortium.org/
mailto:panda@cse.ohio-state.edu
https://ualinkconsortium.org/
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• Aimed at addressing the challenges posed by modern AI and HPC 

Jobs

• Aiming to build on top of advantage ethernet has in terms of 

adoption

• Goal -> “Tail latency” should be minimized

– Multi-pathing and packet spraying

– Flexible delivery order

– Modern congestion control mechanisms

– End-to-end telemetry

– Larger scale, stability, and reliability

• Aims to address issues with current transport protocol services used 

by RoCE and IB [1]

– Issues with DCQCN congestion control mechanism

– Recovering from lost or out of order packet

– Use a more scalable transport protocols with compared to RC 

which has N2 connection overhead

– Improved load balancing capabilities to handle larger 

messages/flows used by AI workloads

Ultra Ethernet Consortium

[1] Data Center Ethernet and Remote Direct Memory Access: Issues at Hyperscale, Hoefler et al., in Computer, July 2023 

Courtesy: Ultra Ethernet Consortium
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• Early adoption of UEC Standard Effort

– Reduced-size Ethernet header for improved routing

latency

• Scale-Up Ethernet (SUE): Alternative to NVLink AND UALink

– x < 400ns for XPU-XPU transfer time, < 150ns for Tx/Rx at Transport

Layer

• In-Network Collectives/Computing (INC)

– Analogous to NVIDIA SHARP

– Similar set of support (Blocking/Nonblocking Barrier, Bcast,

All/reduce)

• Courtesy: 

https://www.nextplatform.com/2025/07/17/broadcom-tries-to-

kill-infiniband-and-nvswitch-with-one-ethernet-stone/ 

UEC-Complaint Hardware: Broadcom Tomahawk Ultra

https://www.nextplatform.com/2025/07/17/broadcom-tries-to-kill-infiniband-and-nvswitch-with-one-ethernet-stone/
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C1:

1 Gbps

CC1:

10 Gbps

C3: ~100us 
latency

C4: EBS 
optimized

C5: ENA

25 Gbps

~50 us 
latency

Evolution of networking on AWS 

C5n: EFA

100 Gbps

~15 us 
latency

Deep Dive on OpenMPI and Elastic Fabric Adapter (EFA) - AWS Online Tech Talks, Linda Hedges
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• Low latency, OS bypass

• Libfabric-based, works with Intel MPI, 

Open MPI, MPICH, MVAPICH2, Nvidia 

NCCL, etc.

• Scalable Reliable Datagram (SRD)

– Unordered, reliable, connectionless

– Highly multipathed

– Latency-based congestion control

Amazon Elastic Fabric Adapter (EFA)

• Enhanced version of Elastic Network Adapter (ENA)

• Network aware multi-path routing

• Exposed through libibverbs and libfabric interfaces

• Introduces new Queue-Pair (QP) type 

– Scalable Reliable Datagram (SRD)

– Also supports Unreliable Datagram (UD)

– No support for Reliable Connected (RC)
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IB Transport Types and Associated Trade-offs

Attribute
Reliable

Connection
Reliable

Datagram
Dynamic 

Connected

Scalable
Reliable

Datagram

Unreliable
Connection

Unreliable
Datagram

Raw
Datagram

Scalability
(M processes, N nodes)

M2N QPs 
per HCA

M QPs 
per HCA

M QPs 
per HCA

M QPs 
per HCA

M2N QPs 
per HCA

M QPs 
per HCA

1 QP 
per HCA

R
el

ia
b

ili
ty

Corrupt data 
detected

Yes

Data Delivery 
Guarantee

Data delivered exactly once No guarantees

Data Order 
Guarantees

Per connection
One source to 

multiple 
destinations

Per connection No
Unordered, 

duplicate data 
detected

No No

Data Loss 
Detected

Yes No No

Error Recovery
Errors (retransmissions, alternate path, etc.) handled by transport layer. 

Client only involved in handling fatal errors (links broken, protection 
violation, etc.)

Errors are 
reported to 
responder

None None

Scalable
Reliable

Datagram
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Slingshot: HPE/Cray’s 8th Generation Scalable Interconnect

64 ports x 200 
Gbps

Over 250K
endpoints with a 
diameter of just

three hops

Ethernet 
Compatible

Easy connectivity
to datacenters and 

third-party
storage.

“HPC inside”

World class 
Adaptive Routing 

and QoS

High utilization at 
scale. Strong 

support for hybrid 
workloads.

Efficient
Congestion 

Control

Performance 
isolation between 
workloads.

Low, Uniform 
Latency

Focus on tail
latency, because 

real apps 
synchronize.

Courtesy: HPE/Cray Inc. (ExaComm ‘19 Keynote Talk by Steve Scott)
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Slingshot Quality of Service Classes

• Highly tunable QoS classes

– Priority, ordering routing protocol, minimum bandwidth guarantees, 

maximum bandwidth constraints, etc.

• Supports multiple, overlaid virtual networks…

– High priority compute

– Standard compute

– Low-latency control & synchronization

– Bulk I/O

– Scavenger class background

• Jobs can use multiple traffic classes

• Provides performance isolation for different types of traffic

– Small message reductions do not get stuck behind large messages

– Less interference between compute and I/O
Courtesy: HPE/Cray Inc. (ExaComm ‘19 Keynote Talk by Steve Scott)
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Slingshot Congestion Management

CONGESTION 
MANAGEMENT

• Hardware automatically tracks all outstanding packets

– Knows what is flowing between every pair of endpoints

• Quickly identifies and controls causes of congestion

– Pushes back on sources… just enough

– Frees up buffer space for everyone else

– Other traffic not affected

– Avoids HOL blocking end to end

• Fast and stable across wide variety of traffic patterns

– Suitable for dynamic HPC traffic

• Performance isolation between apps on same QoS class

– Applications much less vulnerable to other traffic on the network

– Predictable runtimes

– Lower mean and tail latency – a big benefit in apps with global synchronization

Courtesy: HPE/Cray Inc. (ExaComm ‘19 Keynote Talk by Steve Scott)
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Collective Communication (across CPUs or GPUs)
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In-Network Computing - Collective Support (SHARP)
CPU/GPU

Reduce data in switch

Switch

Broadcast reduced 
data from switch

Send data to switch 

+

2

1 Initialize in-network offload once per job 

Send data to switch

3 Receive data from switch

No involvement of CPU/GPU once 
data reaches switches

1

++

+

3 3

+ + + +

2 2 2 22 2 2 2

2 2
2 2

22

3 3

3 3

3 33 33 33 3
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• Broadly two types of SmartNICs

– CPU based : NIC + Programmable CPU cores + ASICs

• NVIDIA Bluefield Data Processing Units (DPUs)

• Marvell Octeon

• AMD Pensando DSC

– Field Programmable Gate Arrays (FPGAs) based : NIC + FPGAs

• AMD  Alveo

• Intels FPGA SmartNICs

SmartNICs
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Accelerating Applications with BlueField-3 DPU

• InfiniBand network adapter with 

up to 400Gbps speed

• System-on-chip containing 16 

64-bit ARMv8.2 A78 cores with 

2.75 GHz each

• Up to 32 GB of memory for the 

ARM cores
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MVAPICH2-DPU Library Release

• Supports all features available with the MVAPICH2 release (http://mvapich.cse.ohio-

state.edu)

• Novel framework to offload non-blocking collectives to DPU

• Offloads non-blocking Alltoall/v (MPI_Ialltoall/v) to DPU

• Offloads non/blocking point-to-point to the DPU

• Offloads non-blocking Broadcast (MPI_Ibcast) to DPU

Available from X-ScaleSolutions, please send a note to 

contactus@x-scalesolutions.com to get a trial license.

http://mvapich.cse.ohio-stae.edu/
http://mvapich.cse.ohio-stae.edu/
http://mvapich.cse.ohio-stae.edu/
mailto:contact@x-scalesolutions.com
mailto:contact@x-scalesolutions.com
mailto:contact@x-scalesolutions.com
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Application-level Benefits (P3DFFT, HPL With DPU Co-Design)

Benefits in 
application-level
execution time
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Use of BlueField-2/3 DPUs to Offload One-Sided Communication

• Use of GVMI and IB Primitives to create APIs for 

offloading one-sided MPI Put/Get and 

OpenSHMEM Nonblocking put/get (RMA)

• Use of Block Sparse Matrix Multiplication 

(BSPMM) kernel with get/compute/update 

pattern (Comparison against blocking RMA and 

nonblocking RMA versions of the kernel)

B. Michalowicz, K. Suresh, H. Subramoni, M. Abduljabbar, DK Panda, and S. Poole,  Efficient Offloading Designs for One-Sided Communication to 

SmartNICs, HiPC ‘24, Dec 2024.
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Smart Compute Offload (Hybrid CPU + BlueField-3 SmartNICs)
• Targeted towards libraries like PETSc and HYPRE

– Creating a set of APIs for Vector-Multiply Add (VMA), 

Distributed Dot (DDOT), and Matrix-Vector (MATVEC) operations

– Onloading Scheme for reducing cost of data movement

• Older CPUs  (Intel Broadwell) + BF3: Up to 24% performance 

improvement

• Newer CPUs (Intel SPR) + BF3: Up to 10-15% Improvement
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K. Suresh, B. Michalowicz, N. Contini, B. Ramesh, M. Abduljabbar, A. Shafi, H. Subramoni, and DK Panda,  Using Bluefield-3 SmartNICs to Offload Vector 

Operations in the Kryolov Subspace Method, HiPC ‘24, Dec 2024.
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Two types of SmartNICs

– CPU based AMD Pensando DSC

– FPGA based Alveo 

AMD SmartNICs

Alveo SmartNIC

– Eg: U25N SmartNIC

– XtremeScale  X2 Ethernet Controller

– AMD UltraScale+  FPGA

– Multi-core Arm processor

– FPGA has programmable dataplane piplenes like QoS, IPsec, Match Engine

AMD Pensando DSC

– Powered by Pensando DPU

– P4- programmable custom match processing units (MPUs)

– combined with a 16x A72 ARM® core complex

– dedicated data encryption and storage offload engines
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Intel Smart Networking Devices
• Two types of Smart Networking devices

– Intel Infrastructure Processing Units (IPUs)

• Primarily used to provide Cloud Services by Offloading Network, Storage, Security

– Intel FPGA based SmartNICs

• Programmable network device to accelerate infrastructure applications

• Unlike IPUs, cannot offload entire infrastructure stack with storage and security
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Intel IPUs and SmartNIC Examples

– packet processing engine 

– RDMA and storage capability including NVMe 

offload 

– ARM Neoverse based compute complex

– 2x100 Gbps Ethernet

– Onboard Ethernet 

Controller

– Intel Agilex® 7 FPGA

Intel IPU E2000Intel FPGA SmartNIC NL6000
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WSE-3 Nvidia H100 Difference

Chip Size 46,225 mm² 826 mm² 57 X

Cores 900,000 16,896 FP32 + 528 Tensor 52X

On-chip memory 44 GB 0.05 GB 880 X

Memory bandwidth 21 PB/sec 0.003 PB/sec 7,000 X

Fabric bandwidth 214 Pb/sec 0.0576 Pb/sec 3,715 X

• Cores:

– 4 trillion transistors (5nm TSMC process)

– 900,000 AI cores

– 125 petaflops of peak AI performance

• Memory:

– 44GB on-chip SRAM; 21 PB/s

– External memory: 1.5TB, 12TB, or 1.2PB

• Fabric Interconnection:

– All cores connected in a 2D-mesh

(“Swarm” – on chip interconnect)

– 214 Pb/s

Cerebras WSE-3 architecture

Courtesy: Cerebras Inc
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LLM Training Scalability with Cerebras

Ease-of-use Linear scaling

On GPT-3 XL model, Cerebras shows perfect linear scaling up to 16 CS-2s 

— that’s perfect scaling up to 13.6 million cores.
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• AI processor is designed to maximize 

training throughput and efficiency

• Tensor Processing Cores (TPC) :

–  VLIW SIMD processor

– GEMM operation acceleration

– Supports: FP32, BF16, INT32, INT16, 

INT8, UINT32, UINT16, and UINT8

• Memory :

– Per core on-die SRAM, local memories

– four HBM devices, 32 GB Capacity, 1 

TB/s bandwidth

• Network: RDMA over Converged 

Ethernet (RoCE v2) engines on-chip 

Habana Gaudi : Architecture
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• HLS-Gaudi®2 Server:  

– All-to-all connectivity across 

eight Intel Gaudi2 processors

• Each server has 24x100GbE, 

three ports per Intel Gaudi2 

accelerator

• The Habana Communication 

Library provides communication 

support

Scaling Out on Habana Gaudi
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Tokens per second training on LLaMA2 70B model with Gaudi2 HL-225H Mezzanine 

cards and two Intel® Xeon® Platinum 8380 CPU @ 2.30GHz, and 1TB of System Memory

LLM Training Scalability with Habana Gaudi
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• Open source organization (formerly OpenIB)

– www.openfabrics.org

• Incorporates both IB, RoCE, and iWARP in a unified manner

– Support for Linux and Windows

• Users can download the entire stack and run

– Latest stable release is OFED 4.17-1

• New naming convention to get aligned with Linux Kernel Development

• OFED 5.3 was under development

Software Convergence with OpenFabrics

http://www.openfabrics.org/
http://www.openfabrics.org/
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• Collaboration between industry, laboratories, and academia to create 

production grade communication frameworks and open standards for data 

centric, ML/AI,  and high-performance applications

– Tuned Support for x86_64 (Xeon/AMD), Power 8/9, Arm v8 (Cortex-

A/N1/ThunderX2/Huawei)

– Support for AMD and Nvidia GPUs

– Runs on Servers, Raspberry PI like platforms, SmartNIC, Nvidia Jetson platforms, etc.

UCX Software Stack

Courtesy: https://www.openucx.org/

• v1.18.0 - January ‘25

• v1.17.0 – June ‘24

• v1.14.1 – April ‘24

• Projects & Working Groups

– UCX – Unified Communication X

– UCC – Collective Library

– OpenSNAPI – Smart network Project

– SparkUCX – www.sparkucx.org

– UCD – Advanced Datatype Engine

– HPCA Benchmark – Benchmarking Effort
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OFI Provider

Libfabrics Software Stack

Courtesy: http://www.slideshare.net/seanhefty/ofi-overview?ref=http://ofiwg.github.io/libfabric/

Open Fabrics Interface (OFI)
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• 271 IB Clusters (54 %) in the Jun ‘25 Top500 list

− (http://www.top500.org)

• Installations in the Top 50 (30 systems):

Large-scale InfiniBand Installations

4,801,344-core (JUPITER Booster) @ Eviden/EuroHPC/FZJ in Germany (4th) – 
new

315-120-core (ABCI-Q) @ AIST in Japan (27th) – new

1,123,200-core (Eagle) @ Microsoft (4th) 223,088-core (Gefion) @ Danish Centre for AI Innovation in Denmark (29th) 

1,824,768-core (Leonardo) @CINECA in Italy (10th) 555,520-core (Selene) @ NVIDIA (30th)

718,848-core (ISEG2)@Nebius AI (Netherlands) (13th) – new 185,712-core (SuperPOD), at NVIDIA (32nd) 

663,040-core (MareNostrum 5 ACC),@BSC in Spain (11th) 445,440-core (Explorer-WUS3) @ Microsft Azure (USA) (34th) – new

479,232-core (ABCI 3.0),@AIST in Jaman (15th) – new 227,136-core (Jean Zay H100) @ CNRS/IDRIS-GENCI in France (35th) – new

485,888-core (Eos NVIDIA DGX SuperPOD),@NVIDIA (16th) 146,304-core (FPT AI Factory Japan) in Japan (36th) – new

349,440-core (SSC-24)@Samsung Electronics in Korea (18th) – new 221,952-core (Miyabi-G) @ JCAHPC in Japan (37th) 

1,572,480-core (Sierra),@LLNL (20th) 142,240-core (FPT AI Factory Vietnam) in Vietnam (38th) – new

297,840-core (CHIE-3),@Softbank in Japan (23rd) 218,880-core (ISEG) @ Nebius AI in the Netherlands (39th) – new

297,840-core (CHIE-2),@Softbank in Japan (25th) 143,360-core (Ubilink) @ Ubilink in Taiwan (41st)

237,280-core (Njoerd) @ Northern Data Group in the UK (26th) – new and many more!

http://www.top500.org/
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Ethernet-based Scientific Computing Installations (Jun 2025)
• 167 Ethernet-based (1G, 10G, 25G, 50G, 100G, 200G, 400G, 800G) compute systems with ranking in the Jun ‘25 Top500 list

− 11,039,616-core (El Capitan) using Slingshot-11 at LLNL (1st) 

− 8,699,904-core (Frontier) using Slingshot-11 at ORNL (2nd)

− 4,742,808-core (Aurora) using Slingshot-11 at ANL (3rd) 

− 3,143,520-core (HPC6) using Slingshot-11 at Eni S.p.A., Italy (6th) 

− 2,121,600-core (Alps) using Slinshot-11 at CSCS, Switzerland (8th) 

− 2,752,704-core (LUMI) using Slingshot-11 at EuroHPC, Finland (9th) 

− 1,028,160-core (Isambard-AI phase 2) using Slingshot-11 at Univ. Bristol  (11th) – new

− 1,161,216-core (Tuolumne) using Slingshot-11 at LLNL (12th) – new

− 822,528-core (Discovery 6) using Slingshot-11 at ExxonMobil (17th) – new 

− 481,440-core (Venado) using Slingshot-11 at LANL (19th) 

− 548,5332-core (CEA-HE) using BXI-v2 at CEA in France (24th)

− 888,832-core (Perlmutter) using Slingshot-11 at NERSC (25th)

− 383,040-core (El Dorado) using Slingshot-11 at SNL (28th) 

− 483,840-core (AI-03) using Broadcom NetXtreme-E at Core42 (UAE) (33rd) –new 

− 319,072-core (Adastra) Slingshot-11 at GENCI-CINES,  France (40th)

− 74,880-core (Israel-1) using NVIDIA Spectrum-X at NVIDIA Israel (44th) – new

− 877,824-core (Shaheen III) Slingshot-11 at KAUST, Saudi Arabia (47th) 

− 181,440-core (Hunter) using Slingshot-11 at HLRS, Germany (54th) – new

− 660,800-core (Crossroads) Slingshot-11 at LANL/SNL/NNSA/DOE (57th) 

− 181,248-core (Setonix) Slingshot-11 at Pawsey Supercomputing Centre, Australia (59th)

− 232,000-core (Discovery 5) Slingshot-11 at ExxonMobil, USA (60th)

− and many more!
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Trends in Commodity Interconnects: Last 10 Years
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• Low-level Performance

• Message Passing Interface (MPI)

Case Studies
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Low-level Latency and Uni-directional Bandwidth Measurements (IB-EDR v RoCE)
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Verbs level evaluation of EFA performance
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Verbs Level Evaluation of Broadcom RoCE adapters
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• Low-level Performance

• Message Passing Interface (MPI)

Case Studies
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Overview of the MVAPICH Project

• High Performance open-source MPI Library 

• Support for multiple interconnects

– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS 

EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms

– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-4.1 standard

• http://mvapich.cse.ohio-state.edu 

• Additional optimized versions for different systems/environments:

– MVAPICH-Plus (Unification of MVAPICH2-X and MVAPICH2-GDR), since 2023

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

– OSU MPI Micro-Benchmarks (OMB), since 2004

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,450 organizations in 92 countries 

(listed under the Users Tab of the MVAPICH page)

• More than 1.93 Million downloads from the OSU site 

directly

• Empowering many TOP500 clusters (June ‘25 ranking)

– 21st , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 67th , 448, 448 cores (Frontera) at TACC

– 88th , 288,288 cores (Lassen) at LLNL

• Available with software stacks of many vendors and 

Linux Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 67th ranked TACC Frontera system

• Empowering Top500 systems for more than 20+ years

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
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One-way Latency: MPI over IB with MVAPICH2
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Bandwidth: MPI over IB with MVAPICH2
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ConnectX-4 EDR (100 Gbps): 3.1 
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MPI Level Latency/Bandwidth on Slingshot 11
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MPI Level Latency/Bandwidth on Broadcom RoCE
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• You will run the experiments on the OSU RI2 cluster

• Please use the account name and password from 

http://go.osu.edu/ibtutorial 

Getting Set-up for the Hands-on Exercise 1

• Open your favorite Terminal

$ ssh ri2tut01@ri2.cse.ohio-state.edu

Enter Password: 

• Today’s examples are located in the training 

account home directories:

– /opt/tutorials/tutorial-ib

• Verify files are present 

http://go.osu.edu/ibtutorial
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Step 2: Benchmarking InfiniBand Latency

$ srun -N2 --reservation=ibtutorial run_perftest_lat.sh

Executing '/usr/bin/ib_send_lat -d mlx5_0 -a' on the server

Executing '/usr/bin/ib_send_lat -d mlx5_0 -a gpu08' on the client

. . . .

 #bytes #iterations    t_min[usec]    t_max[usec]  t_typical[usec]    t_avg[usec]    t_stdev[usec]   99% percentile[usec]   99.9% 

percentile[usec]

 2       1000          0.94           3.00         0.98                0.98             0.04            1.08                  3.00

 4       1000          0.94           3.36         0.96                0.98             0.04            1.04                  3.36

 8       1000          0.95           2.96         0.99                0.99             0.04            1.09                  2.96

 16      1000          0.95           2.83         0.97                0.98             0.04            1.01                  2.83

 32      1000          1.02           2.60         1.04                1.05             0.00            1.14                  2.60

 64      1000          1.00           2.15         1.03                1.04             0.00            1.07                  2.15

 128     1000          1.07           3.09         1.12                1.12             0.03            1.14                  3.09

 256     1000          1.45           3.21         1.53                1.54             0.03            1.67                  3.21

 512     1000          1.51           4.22         1.54                1.56             0.03            1.69                  4.22

 1024    1000          1.64           3.45         1.67                1.69             0.03            1.79                  3.45….
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Benchmarking InfiniBand Latency

#bytes ib_send_lat ib_write_lat ib_read_lat
2 1.01 0.94 1.93

4 1.01 0.94 1.96
8 1.01 0.95 1.97

16 1.02 0.95 1.98
32 1.02 1.02 1.98

64 1.12 1 2
128 1.16 1.07 2.05

256 1.60 1.45 2.1
512 1.64 1.51 2.14

1024 1.78 1.64 2.4
2048 2.01 1.88 2.64
4096 2.48 2.34 3.12
8192 3.16 3.02 3.79

16384 4.34 4.19 5.03

32768 6.41 6.25 7.05

Latency 
Increases 
with 
Message 
Size

write is 
faster
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Step 3: Benchmarking InfiniBand Bandwidth

$ srun -N2 --reservation=ibtutorial run_perftest_bw.sh

Executing '/usr/bin/ib_send_bw -d mlx5_0 -a' on the server

Executing '/usr/bin/ib_send_bw -d mlx5_0 -a gpu08' on the client

. . . .

#bytes     #iterations    BW peak[MB/sec]    BW average[MB/sec]   MsgRate[Mpps]

 2          1000             12.01              11.85              6.210454

 4          1000             22.17              17.74              4.650813

 8          1000             45.55              35.99              4.716851

 16         1000             90.87              71.80              4.705226

 32         1000             179.96             143.74             4.710197

 64         1000             362.58             286.97             4.701794

 128        1000             726.98             573.51             4.698231

 256        1000             1457.57            1111.64            4.553276

 512        1000             2872.28            2281.59            4.672705

 1024       1000             5488.89            4384.14            4.489363
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Benchmarking InfiniBand Bandwidth

#Bytes ib_send_bw ib_write_bw ib_read_bw
2 11.59 11.68 12.01

4 15.84 23.78 22.17
8 45.1 47.07 45.55

16 90.2 93.66 90.87
32 176.06 188.28 179.96

64 351.28 377.54 362.58
128 719.83 751.2 726.98

256 1385.21 1498.58 1457.57
512 2694 2974.33 2872.28

1024 5540.84 5888.88 5488.89
2048 9664.95 9868.51 6823.24
4096 10393.64 10825.72 6304.71
8192 11140.84 11180.81 9600.63

16384 11197.53 11363.68 9847.76

32768 11274.91 11295.33 10802.41
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Impact of Maximum Transmission Unit (MTU)

$ srun -N2 --reservation=ibtutorial run_mtu.sh 256 

4096

IB Read Bandwidth Test using MTU=256

Executing '/usr/bin/ib_read_bw -d mlx5_0 -a -m 256 ' on the server

Executing '/usr/bin/ib_read_bw -d mlx5_0 -a -m 256 gpu05' on the client

...

IB Read Bandwidth Test using MTU=4096

Executing '/usr/bin/ib_read_bw -d mlx5_0 -a -m 4096 ' on the server

Executing '/usr/bin/ib_read_bw -d mlx5_0 -a -m 4096 gpu05' on the client

...
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Impact of Changing Inline Size: IB

$ srun -N2 --reservation=ibtutorial run_inline_ib.sh 0 

128 #(Can explore with other values as well)

IB Write Latency using Inline=0

Executing '/usr/bin/ib_write_lat -d mlx5_0 -a -I 0 ' on the server

Executing '/usr/bin/ib_write_lat -d mlx5_0 -a -I 0 gpu05' on the client

...

IB Write Latency using Inline=128

Executing '/usr/bin/ib_write_lat -d mlx5_0 -a -I 128 ' on the server

Executing '/usr/bin/ib_write_lat -d mlx5_0 -a -I 128 gpu05' on the client

...
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Benchmarking MPI Performance

$ srun -N2 --reservation=ibtutorial run_omb.sh

+ /opt/mvapich2/mvapich2-2.3.7/bin/mpirun_rsh -np 2 gpu05 gpu06 \

MV2_HOMOGENEOUS_CLUSTER=1 MV2_IBA_HCA=mlx5_0 \ 

/opt/mvapich2/mvapich2-2.3.7/libexec/osu-micro-benchmarks/mpi/pt2pt/osu_latency

# OSU MPI Latency Test v5.9

# Size          Latency (us)

0                       1.21

1                       1.23

2                       1.21

4                       1.19

8                       1.17

16                      1.19

32                      1.18

64                      1.20

128                     1.26
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Benchmarking MPI Performance

#Bytes Latency (us) Bandwidth (MB/s) Bi-Bandwidth(MB/s)
1 1.21 5.43 4

2 1.23 10.69 8.17
4 1.21 21.08 16.75

8 1.19 41.79 34.59
16 1.17 82.29 71.42

32 1.19 163.06 162.32
64 1.18 353.42 518.72

128 1.2 655.47 665.11
256 1.26 1333.58 1875.53
512 1.66 2291.8 3225.89

1024 1.73 3569.84 4724.21
2048 1.88 5250.27 6284.36
4096 2.22 6806.01 7664.77
8192 2.93 9669.86 10540.81

16384 4.37 7736.91 11650.45M
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Impact of Changing Inline Size: MPI

$ srun -N2 --reservation=ibtutorial run_inline_mpi.sh 0 

128 #(Can explore with other values as well)

MPI osu_latency Latency using Inline=0

MPI Send/Recv Latency using Inline=0 on hosts gpu05 and gpu06

...

MPI osu_latency Latency using Inline=128

MPI Send/Recv Latency using Inline=128 on hosts gpu05 and gpu06

...
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MPI Collective Performance with RC vs. UD

$ srun -N4 --reservation=ibtutorial run_rc_ud.sh

Running MPI_Alltoallv with 112 processes with RC

+ /opt/mvapich2/mvapich2-2.3.7/bin/mpirun_rsh -np 112 -hostfile $HOME/hosts-10291 

MV2_HOMOGENEOUS_CLUSTER=1 MV2_IBA_HCA=mlx5_0 MV2_USE_ONLY_UD=0 

/opt/mvapich2/mvapich2-2.3.7/libexec/osu-micro-

benchmarks/mpi/collective/osu_alltoallv -m 2048

...

Running MPI_Alltoallv with 112 processes with UD

+ /opt/mvapich2/mvapich2-2.3.7/bin/mpirun_rsh -np 112 -hostfile $HOME/hosts-10291 

MV2_HOMOGENEOUS_CLUSTER=1 MV2_IBA_HCA=mlx5_0 MV2_USE_ONLY_UD=1 

MV2_UD_MAX_RECV_WQE=512 MV2_UD_MAX_SEND_WQE=512 /opt/mvapich2/mvapich2-

2.3.7/libexec/osu-micro-benchmarks/mpi/collective/osu_alltoallv -m 2048

...
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• Introduction

• Why High-Performance Networking for HPC and AI?

• Communication Model and Semantics of High-Performance Networks

• Architectural Overview of High-Performance Networks

• Overview of Emerging Smart Network Technologies

– Collectives (NVIDIA SHARP)

– Overview of SmartNIC Architecture

– NVIDIA BlueField DPUs

– AMD Pensando Smart NICs

–  Intel Columbiaville IPUs

• High-Performance Network Deployments for AI Workloads

– Cerebras

– Habana-Gaudi

• Overview of Software Stacks for Commodity High-Performance Networks

• Sample Case Studies and Performance Numbers

• Hands on Exercises: IB Technologies and MPI Collectives

• Conclusions and Final Q&A

Presentation Overview
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• Presented smart networking architectures & trends in Clusters

• Presented background and details of various smart network for HPC

– Highlighted the main features of high-performance networks

– Gave an overview of high-performance network hardware/software ecosystem

– Discussed sample performance numbers in designing various high-end systems

• Smart networking architectures are leading to a new generation of 

networked computing systems, opening many research issues needing 

novel solutions

• Will see many more innovations in the coming years for exascale/zetascale 

systems

Concluding Remarks
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