Hot Interconnects 2015

Commercial Computing Trends and its Impact on Interconnect

Rick Hetherington
Vice President
SPARC Architecture and Performance
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Keynote Agenda

Who am I and why am I here

Server market trend: impact on interconnect

On-premise to Cloud Computing: impact on interconnect

Oracle Engineered Systems: dependence on interconnect

Sonoma Launch and how it summarizes this talk
My background:

More than 35 years in the Industry

Sun/Oracle since 1996 as SPARC Architect

‘81-’96 with Digital Doing Vaxes and Alphas

Alpha EV6 System Architect – first DDR SRAM + System Interface

Niagara Architect brought SERDES technology into SUN
8-64 Socket Server Market Trends

UNITS

Calendar Quarter

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
2 Socket Server Market Trends

UNITS

Calendar Quarter

What is contributing to this trend?

Capability, Cost, Reliability, Power, Footprint, Applications, Cloud
What is the impact on interconnect?

- Higher throughput (core count) concentrated in fewer processors
 - Large Dies but still a finite and limited pin count
- Critical interconnect is on die - higher levels of integration
- Memory Bandwidth is a limiter
 - 5 – 8GBs (delivered) per threaded-core on commercial workloads
 - Latency vs Bandwidth vs Capacity battle is never ending
- Extremely Fast Coherence Links for linear scaling
- IO
 - Fewer Adapters at much much higher frequency interconnect
 - Storage moving closer to the processor with NVMe
 - Storage moving next to the processor with persistent memory devices
Oracle Cloud

- Data as a Service
- Software as a Service
- Platform as a Service
- Infrastructure as a Service
Interconnect in the Oracle Public Cloud

- **120K+ VMs in 19 Data Centers**
- **#2 SaaS Provider in the world**
- **70M+ Users on the Oracle Cloud Every Day**
- **31B+ Transactions on the Oracle Cloud Every Day**

Today:
- Server Edge: 10G
- Network Core: 40G

Trending:
- Server Edge: 25G-40Gbe
- Network Core: 100Gbe
Cloud trends pushing higher interconnect speeds?

• More capable processors with much high memory capacity
 • SPARC M7 - 32 cores and 256 threads
 • SPARC M7 – 52 bit Physical Address - 16 DDR4 DIMM Slots

• Higher Concentration of Virtual Machines (VM)/socket
 • Today less than 10 VMs/Socket
 • SPARC M7 can easily support 30 – 100 VMs

• Higher I/O Requirements
 • Smaller Servers with High Concentration of VMs requires much higher pin BW
 • IaaS driven by cost, fewer ports and cables to higher speed switches and routers
Oracle SuperCluster T5-8 and M6
SPARC Based Engineered Systems
Oracle SuperCluster T5-8 and M6-32 Architecture

Complete | Optimized | Standardized

- **Integrated Enterprise NAS Storage**
 - System storage (system images, logs, test/dev databases, backup)

- **Unified Ultra-Fast Network**
 - InfiniBand internal I/O backplane
 - Ethernet data center connectivity

- **Database & Application Servers**
 - **T5-8**: 16 CPU (16 cores), 4TB RAM
 - **M6-32**: 32 CPU (12 cores), 32TB RAM

- **Exadata Storage Servers**
 - Optimized for Oracle Database
 - Intelligent scale-out storage grid
Interconnect of the SPARC T5-8 Server
2 T5-8 Systems in a Full Rack Interconnected with Infiniband

- (1) Dual-port 10 GbE network interface cards, for connection to the 10 GbE client access network
- (2) Dual-port InfiniBand host channel adapters, for connection to the InfiniBand network
InfiniBand Network on Full Rack
Sonoma

Fully Integrated to Lower Latency, Power, and Cost for Scale-Out
Connectivity Optimized for Scale-Out

- 2 InfiniBand links @ FDR (56Gbps)
 - Low latency scale-out networking interconnect for DB and clusters
 - 28 GB/s Bidirectional Bandwidth
- 2 PCIe links @ Gen3 (64Gbps)
 - 32 GB/s Bidirectional Bandwidth
- 4 Scale-Up Coherence links @ 16Gbps (128Gbps)
 - 128 GB/s bidirectional bandwidth
 - Auto frame retry, auto link retrain, and single lane failover
Sonoma: The Perfect Choice for Scale-Out

<table>
<thead>
<tr>
<th>Cost</th>
<th>Convergence</th>
<th>Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>High system integration: networking, memory, fabric</td>
<td>Direct attached memory</td>
<td>Real-time application security</td>
</tr>
<tr>
<td>Mainstream volume process technology</td>
<td>Integrated PCIe</td>
<td>Excellent throughput</td>
</tr>
<tr>
<td>Mainstream TDP</td>
<td>Integrated InfiniBand</td>
<td>Software in Silicon</td>
</tr>
<tr>
<td>Hardware offloads</td>
<td>Lower latency, higher bandwidth</td>
<td>Optimized for Oracle software</td>
</tr>
</tbody>
</table>
Commercial Computing is converging on:

- Two Socket Scale-out Topology
- Processors with Many Cores and Many Threads per Core
- Enterprise Processors have BW needs met with proprietary interconnect
- Cloud Processors require efficiency in cost, power, packaging, virtualization
- Smaller Capable Systems with standardized ports require extreme pin BW
Hardware and Software
Engineered to Work Together